Logic games are complete for game logics

Studia Logica 75 (2):183-203 (2003)
  Copy   BIBTEX


Game logics describe general games through powers of players for forcing outcomes. In particular, they encode an algebra of sequential game operations such as choice, dual and composition. Logic games are special games for specific purposes such as proof or semantical evaluation for first-order or modal languages. We show that the general algebra of game operations coincides with that over just logical evaluation games, whence the latter are quite general after all. The main tool in proving this is a representation of arbitrary games as modal or first-order evaluation games. We probe how far our analysis extends to product operations on games. We also discuss some more general consequences of this new perspective for standard logic.



    Upload a copy of this work     Papers currently archived: 91,349

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library


Added to PP

86 (#192,516)

6 months
4 (#818,853)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Johan Van Benthem
University of Amsterdam

Citations of this work

Neighborhood Semantics for Modal Logic.Eric Pacuit - 2017 - Cham, Switzerland: Springer.
Extensive games as process models.Johan van Benthem - 2002 - Journal of Logic, Language and Information 11 (3):289-313.
Game Logic - An Overview.Marc Pauly & Rohit Parikh - 2003 - Studia Logica 75 (2):165-182.

View all 14 citations / Add more citations

References found in this work

No references found.

Add more references