Saturation and solvability in abstract elementary classes with amalgamation

Archive for Mathematical Logic 56 (5-6):671-690 (2017)

Abstract
Theorem 0.1LetK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}be an abstract elementary class with amalgamation and no maximal models. Letλ>LS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda > {LS}$$\end{document}. IfK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}is categorical inλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then the model of cardinalityλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}is Galois-saturated.This answers a question asked independently by Baldwin and Shelah. We deduce several corollaries: K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document} has a unique limit model in each cardinal below λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document} is weakly tame below λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, and the thresholds of several existing categoricity transfers can be improved.We also prove a downward transfer of solvability :Corollary 0.2LetK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}be an AEC with amalgamation and no maximal models. Letλ>μ>LS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda> \mu > {LS}$$\end{document}. IfK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}is solvable inλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, thenK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}is solvable inμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
ISBN(s)
DOI 10.1007/s00153-017-0561-8
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 47,201
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Forking and Superstability in Tame Aecs.Sebastien Vasey - 2016 - Journal of Symbolic Logic 81 (1):357-383.
Building Independence Relations in Abstract Elementary Classes.Sebastien Vasey - 2016 - Annals of Pure and Applied Logic 167 (11):1029-1092.
Canonical Forking in AECs.Will Boney, Rami Grossberg, Alexei Kolesnikov & Sebastien Vasey - 2016 - Annals of Pure and Applied Logic 167 (7):590-613.
Tameness From Large Cardinal Axioms.Will Boney - 2014 - Journal of Symbolic Logic 79 (4):1092-1119.
Shelah's Eventual Categoricity Conjecture in Universal Classes: Part I.Sebastien Vasey - 2017 - Annals of Pure and Applied Logic 168 (9):1609-1642.

View all 18 references / Add more references

Citations of this work BETA

Toward a Stability Theory of Tame Abstract Elementary Classes.Sebastien Vasey - 2018 - Journal of Mathematical Logic 18 (2):1850009.
Good Frames in the Hart–Shelah Example.Will Boney & Sebastien Vasey - 2018 - Archive for Mathematical Logic 57 (5-6):687-712.

Add more citations

Similar books and articles

Categoricity in Abstract Elementary Classes with No Maximal Models.Monica VanDieren - 2006 - Annals of Pure and Applied Logic 141 (1):108-147.
Categoricity for Abstract Classes with Amalgamation.Saharon Shelah - 1999 - Annals of Pure and Applied Logic 98 (1-3):261-294.
A Topology for Galois Types in Abstract Elementary Classes.Michael Lieberman - 2011 - Mathematical Logic Quarterly 57 (2):204-216.
Abstract Elementary Classes and Infinitary Logics.David W. Kueker - 2008 - Annals of Pure and Applied Logic 156 (2):274-286.
Independence in Finitary Abstract Elementary Classes.Tapani Hyttinen & Meeri Kesälä - 2006 - Annals of Pure and Applied Logic 143 (1):103-138.
Types in Abstract Elementary Classes.Tapani Hyttinen - 2004 - Notre Dame Journal of Formal Logic 45 (2):99-108.

Analytics

Added to PP index
2017-08-04

Total views
9 ( #830,178 of 2,289,860 )

Recent downloads (6 months)
2 ( #584,403 of 2,289,860 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature