Mathematical Logic Quarterly 51 (6):570-578 (2005)
Abstract |
Given a π -institution I , a hierarchy of π -institutions I is constructed, for n ≥ 1. We call I the n-th order counterpart of I . The second-order counterpart of a deductive π -institution is a Gentzen π -institution, i.e. a π -institution associated with a structural Gentzen system in a canonical way. So, by analogy, the second order counterpart I of I is also called the “Gentzenization” of I . In the main result of the paper, it is shown that I is strongly Gentzen , i.e. it is deductively equivalent to its Gentzenization via a special deductive equivalence, if and only if it has the deduction-detachment property
|
Keywords | category of theories Leibniz operator equivalent institutions Algebraic logic metalogical properties algebraizable logics Gentzen institutions lattice of theories algebraizable institutions equivalent deductive systems Gentzen systems deduction‐detachment theorem |
Categories | (categorize this paper) |
DOI | 10.1002/malq.200310132 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
A Survey of Abstract Algebraic Logic.J. M. Font, R. Jansana & D. Pigozzi - 2003 - Studia Logica 74 (1-2):13 - 97.
Definitional Equivalence and Algebraizability of Generalized Logical Systems.Alexej P. Pynko - 1999 - Annals of Pure and Applied Logic 98 (1-3):1-68.
Characterizing Equivalential and Algebraizable Logics by the Leibniz Operator.Burghard Herrmann - 1997 - Studia Logica 58 (2):305-323.
Logical Matrices and the Amalgamation Property.Janusz Czelakowski - 1982 - Studia Logica 41 (4):329 - 341.
View all 18 references / Add more references
Citations of this work BETA
No citations found.
Similar books and articles
Categorical Abstract Algebraic Logic: The Largest Theory System Included in a Theory Family.George Voutsadakis - 2006 - Mathematical Logic Quarterly 52 (3):288-294.
Categorical Abstract Algebraic Logic: Models of Π-Institutions.George Voutsadakis - 2005 - Notre Dame Journal of Formal Logic 46 (4):439-460.
Categorical Abstract Algebraic Logic: More on Protoalgebraicity.George Voutsadakis - 2006 - Notre Dame Journal of Formal Logic 47 (4):487-514.
Categorical Abstract Algebraic Logic: The Criterion for Deductive Equivalence.George Voutsadakis - 2003 - Mathematical Logic Quarterly 49 (4):347-352.
Categorical Abstract Algebraic Logic Categorical Algebraization of First-Order Logic Without Terms.George Voutsadakis - 2005 - Archive for Mathematical Logic 44 (4):473-491.
Categorical Abstract Algebraic Logic Metalogical Properties.George Voutsadakis - 2003 - Studia Logica 74 (3):369 - 398.
Categorical Abstract Algebraic Logic: Equivalent Institutions.George Voutsadakis - 2003 - Studia Logica 74 (1-2):275 - 311.
Algebraic Semantics for Deductive Systems.W. J. Blok & J. Rebagliato - 2003 - Studia Logica 74 (1-2):153 - 180.
On the Infinite-Valued Łukasiewicz Logic That Preserves Degrees of Truth.Josep Maria Font, Àngel J. Gil, Antoni Torrens & Ventura Verdú - 2006 - Archive for Mathematical Logic 45 (7):839-868.
Algebraizable Logics with a Strong Conjunction and Their Semi-Lattice Based Companions.Ramon Jansana - 2012 - Archive for Mathematical Logic 51 (7-8):831-861.
On Two Fragments with Negation and Without Implication of the Logic of Residuated Lattices.Félix Bou, Àngel García-Cerdaña & Ventura Verdú - 2006 - Archive for Mathematical Logic 45 (5):615-647.
Categorical Abstract Algebraic Logic: Algebraic Semantics for (Documentclass{Article}Usepackage{Amssymb}Begin{Document}Pagestyle{Empty}$Bf{Pi }$End{Document})‐Institutions.George Voutsadakis - 2013 - Mathematical Logic Quarterly 59 (3):177-200.
On Gentzen Relations Associated with Finite-Valued Logics Preserving Degrees of Truth.Angel J. Gil - 2013 - Studia Logica 101 (4):749-781.
Analytics
Added to PP index
2013-12-01
Total views
12 ( #750,409 of 2,403,518 )
Recent downloads (6 months)
2 ( #360,890 of 2,403,518 )
2013-12-01
Total views
12 ( #750,409 of 2,403,518 )
Recent downloads (6 months)
2 ( #360,890 of 2,403,518 )
How can I increase my downloads?
Downloads