Probability Propagation in Generalized Inference Forms

Studia Logica 102 (4):913-929 (2014)
  Copy   BIBTEX

Abstract

Probabilistic inference forms lead from point probabilities of the premises to interval probabilities of the conclusion. The probabilistic version of Modus Ponens, for example, licenses the inference from \({P(A) = \alpha}\) and \({P(B|A) = \beta}\) to \({P(B)\in [\alpha\beta, \alpha\beta + 1 - \alpha]}\) . We study generalized inference forms with three or more premises. The generalized Modus Ponens, for example, leads from \({P(A_{1}) = \alpha_{1}, \ldots, P(A_{n})= \alpha_{n}}\) and \({P(B|A_{1} \wedge \cdots \wedge A_{n}) = \beta}\) to an according interval for P(B). We present the probability intervals for the conclusions of the generalized versions of Cut, Cautious Monotonicity, Modus Tollens, Bayes’ Theorem, and some SYSTEM O rules. Recently, Gilio has shown that generalized inference forms “degrade”—more premises lead to less precise conclusions, i.e., to wider probability intervals of the conclusion. We also study Adam’s probability preservation properties in generalized inference forms. Special attention is devoted to zero probabilities of the conditioning events. These zero probabilities often lead to different intervals in the coherence and the Kolmogorov approach

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 76,363

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2013-10-01

Downloads
49 (#241,377)

6 months
1 (#451,398)

Historical graph of downloads
How can I increase my downloads?