An Improved Parameter-Estimating Method in Bayesian Networks Applied for Cognitive Diagnosis Assessment

Frontiers in Psychology 12 (2021)
  Copy   BIBTEX


Bayesian networks can be employed to cognitive diagnostic assessment. Most of the existing researches on the BNs for CDA utilized the MCMC algorithm to estimate parameters of BNs. When EM algorithm and gradient descending learning method are adopted to estimate the parameters of BNs, some challenges may emerge in educational assessment due to the monotonic constraints cannot be satisfied in the above two methods. This paper proposed to train the BN first based on the ideal response pattern data contained in every CDA and continue to estimate the parameters of BN based on the EM or the GD algorithm regarding the parameters based on the IRP training method as informative priors. Both the simulation study and realistic data analysis demonstrated the validity and feasibility of the new method. The BN based on the new parameter estimating method exhibits promising statistical classification performance and even outperforms the G-DINA model in some conditions.



    Upload a copy of this work     Papers currently archived: 79,743

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Building an ACT‐R Reader for Eye‐Tracking Corpus Data.Jakub Dotlačil - 2018 - Topics in Cognitive Science 10 (1):144-160.
Bayesian model learning based on predictive entropy.Jukka Corander & Pekka Marttinen - 2006 - Journal of Logic, Language and Information 15 (1-2):5-20.


Added to PP

1 (#1,534,669)

6 months
1 (#479,335)

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Author Profiles

Citations of this work

No citations found.

Add more citations