Abstract
The category \(\mathbb {DRDL}{'}\), whose objects are c-differential residuated distributive lattices satisfying the condition \(\textbf{CK}\), is the image of the category \(\mathbb {RDL}\), whose objects are residuated distributive lattices, under the categorical equivalence \(\textbf{K}\) that is constructed in Castiglioni et al. (Stud Log 90:93–124, 2008). In this paper, we introduce weak monadic residuated lattices and study some of their subvarieties. In particular, we use the functor \(\textbf{K}\) to relate the category \(\mathbb {WMRDL}\), whose objects are weak monadic residuated distributive lattices, and the category \(\mathbb {WMDRDL}{'}\), whose objects are pairs formed by an object of \(\mathbb {DRDL}{'}\) and a center weak universal quantifier.