On partitioning the infinite subsets of large cardinals

Journal of Symbolic Logic 49 (2):539-541 (1984)
Abstract This article has no associated abstract. (fix it)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2274185
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,233
Through your library
References found in this work BETA
A Combinatorial Property of Measurable Cardinals.E. M. Kleinberg - 1974 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 20 (7):109-111.
A Combinatorial Property of Measurable Cardinals.E. M. Kleinberg - 1974 - Mathematical Logic Quarterly 20 (7):109-111.

Add more references

Citations of this work BETA
Some Coloring Properties for Uncountable Cardinals.Pierre Matet - 1987 - Annals of Pure and Applied Logic 33 (3):297-307.

Add more citations

Similar books and articles
Partitioning Subsets of Stable Models.Timothy Bays - 2001 - Journal of Symbolic Logic 66 (4):1899-1908.
Chains of End Elementary Extensions of Models of Set Theory.Andrés Villaveces - 1998 - Journal of Symbolic Logic 63 (3):1116-1136.
Stationary Subsets of $\Lbrack \Aleph\Omega \Rbrack^{<\OmegaN}$.Kecheng Liu - 1993 - Journal of Symbolic Logic 58 (4):1201 - 1218.
Abstract Logic and Set Theory. II. Large Cardinals.Jouko Väänänen - 1982 - Journal of Symbolic Logic 47 (2):335-346.
Gap Forcing: Generalizing the Lévy-Solovay Theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
Characterising Subsets of Ω1 Constructible From a Real.P. D. Welch - 1994 - Journal of Symbolic Logic 59 (4):1420 - 1432.

Monthly downloads

Added to index

2009-01-28

Total downloads

17 ( #285,237 of 2,172,876 )

Recent downloads (6 months)

1 ( #324,901 of 2,172,876 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Order:
There  are no threads in this forum
Nothing in this forum yet.

Other forums