A functorial property of the Aczel-Buchholz-Feferman function
Journal of Symbolic Logic 59 (3):945-955 (1994)
Abstract
Let Ω be the least uncountable ordinal. Let K(Ω) be the category where the objects are the countable ordinals and where the morphisms are the strictly monotonic increasing functions. A dilator is a functor on K(Ω) which preserves direct limits and pullbacks. Let $\tau \Omega: \xi = \omega^\xi\}$ . Then τ has a unique "term"-representation in Ω. λξη.ω ξ + η and countable ordinals called the constituents of τ. Let $\delta and K(τ) be the set of the constituents of τ. Let β = max K(τ). Let [ β ] be an occurrence of β in τ such that τ [ β] = τ. Let $\bar \theta$ be the fixed point-free version of the binary Aczel-Buchholz-Feferman-function (which is defined explicitly in the text below) which generates the Bachman-hierarchy of ordinals. It is shown by elementary calculations that $\xi \mapsto \bar \theta(\tau \lbrack \gamma + \xi \rbrack)\delta$ is a dilator for every $\gamma > \max\{\beta. \delta.\omega\}$DOI
10.2307/2275919
My notes
Similar books and articles
Intermediate predicate logics determined by ordinals.Pierluigi Minari, Mitio Takano & Hiroakira Ono - 1990 - Journal of Symbolic Logic 55 (3):1099-1124.
Countable structures, Ehrenfeucht strategies, and wadge reductions.Tom Linton - 1991 - Journal of Symbolic Logic 56 (4):1325-1348.
ΔΕΔΟΥΣΗ (Χ.Β.) Μενανδρου Σαμια. (Ακαδημια Αθηνων, Βιβλιοθηκη Α. Μανουση 8.) Pp. xiv + 368. Athens: Κεντρον Ερευνης της Ελληνικης και Λατινικης Γραμματειας, 2006. Paper. ISBN: 960-404-086-3. [REVIEW]Andreas Fountoulakis - 2008 - The Classical Review 58 (1):83-84.
Generalized R-Cohesiveness and the Arithmetical Hierarchy: A Correction to "Generalized Cohesiveness".Carl G. Jockusch & Tamara J. Lakins - 2002 - Journal of Symbolic Logic 67 (3):1078 - 1082.
An ordinal partition avoiding pentagrams.Jean A. Larson - 2000 - Journal of Symbolic Logic 65 (3):969-978.
Bounds for the closure ordinals of essentially monotonic increasing functions.Andreas Weiermann - 1993 - Journal of Symbolic Logic 58 (2):664-671.
Analytics
Added to PP
2009-01-28
Downloads
22 (#522,476)
6 months
1 (#452,962)
2009-01-28
Downloads
22 (#522,476)
6 months
1 (#452,962)
Historical graph of downloads
References found in this work
[product]¹2-logic, Part 1: Dilators.Jean-Yves Girard - 1981 - Annals of Mathematical Logic 21 (2):75.
A simplified functorial construction of the veblen hierarchy.Andreas Weiermann - 1993 - Mathematical Logic Quarterly 39 (1):269-273.