Abstract
A propositional logic has the variable sharing property if φ → ψ is a theorem only if φ and ψ share some propositional variable. In this note, I prove that positive semilattice relevance logic and its extension with an involution negation have the variable sharing property. Typical proofs of the variable sharing property rely on ad hoc, if clever, matrices. However, in this note, I exploit the properties of rather more intuitive arithmetical structures to establish the variable sharing property for the systems discussed.