Abstract
Given a group , G⊆Mm, definable in a first-order structure equation image equipped with a dimension function and a topology satisfying certain natural conditions, we find a large open definable subset V⊆G and define a new topology τ on G with which becomes a topological group. Moreover, τ restricted to V coincides with the topology of V inherited from Mm. Likewise we topologize transitive group actions and fields definable in equation image. These results require a series of preparatory facts concerning dimension functions, some of which might be of independent interest