Philosophical Books 1995:89-102 (2001)

The aim of this critical notice is to elucidate Dummett's contributions to the issues surrounding Frege's contextual definition of number (the number of Fs equals the number of Gs if the Fs and the Gs are in one-one correspondence) and the interpretation of "Frege's theorem" -- the theorem that the second order theory consisting of the contextual definition implies the infinity of the natural numbers. To do so, we focus on Dummett's account of the context principle, his discussion of Frege's use of contextual definition, and his treatment of the "Julius Caesar problem."
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 64,077
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
40 ( #270,602 of 2,454,555 )

Recent downloads (6 months)
3 ( #225,727 of 2,454,555 )

How can I increase my downloads?


My notes