Non-standard analysis in ACA0 and Riemann mapping theorem

Mathematical Logic Quarterly 53 (2):132-146 (2007)

Abstract
This research is motivated by the program of reverse mathematics and non-standard arguments in second-order arithmetic. Within a weak subsystem of second-order arithmetic ACA0, we investigate some aspects of non-standard analysis related to sequential compactness. Then, using arguments of non-standard analysis, we show the equivalence of the Riemann mapping theorem and ACA0 over WKL0. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords Riemann mapping theorem  non‐standard analysis  Reverse mathematics
Categories (categorize this paper)
DOI 10.1002/malq.200610033
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 46,206
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Nonstandard Arithmetic and Reverse Mathematics.H. Jerome Keisler - 2006 - Bulletin of Symbolic Logic 12 (1):100-125.
The Self-Embedding Theorem of WKL0 and a Non-Standard Method.Kazuyuki Tanaka - 1997 - Annals of Pure and Applied Logic 84 (1):41-49.
Non‐Standard Analysis in WKL0.Kazuyuki Tanaka - 1997 - Mathematical Logic Quarterly 43 (3):396-400.

Add more references

Citations of this work BETA

Reverse Mathematics: The Playground of Logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
Formalizing Non-Standard Arguments in Second-Order Arithmetic.Keita Yokoyama - 2010 - Journal of Symbolic Logic 75 (4):1199-1210.

Add more citations

Similar books and articles

Complex Analysis in Subsystems of Second Order Arithmetic.Keita Yokoyama - 2007 - Archive for Mathematical Logic 46 (1):15-35.
Reverse Mathematics and Π21 Comprehension.Carl Mummert & Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (4):526-533.
How Incomputable Is the Separable Hahn-Banach Theorem?Guido Gherardi & Alberto Marcone - 2009 - Notre Dame Journal of Formal Logic 50 (4):393-425.
The Dirac Delta Function in Two Settings of Reverse Mathematics.Sam Sanders & Keita Yokoyama - 2012 - Archive for Mathematical Logic 51 (1-2):99-121.
A Definitive Constructive Open Mapping Theorem?Douglas Bridges & Hajime Ishihara - 1998 - Mathematical Logic Quarterly 44 (4):545-552.
Classifying Dini's Theorem.Josef Berger & Peter Schuster - 2006 - Notre Dame Journal of Formal Logic 47 (2):253-262.
Continuity Properties in Constructive Mathematics.Hajime Ishihara - 1992 - Journal of Symbolic Logic 57 (2):557-565.
Non‐Standard Analysis in WKL0.Kazuyuki Tanaka - 1997 - Mathematical Logic Quarterly 43 (3):396-400.
Reverse Mathematics of Prime Factorization of Ordinals.Jeffry L. Hirst - 1999 - Archive for Mathematical Logic 38 (3):195-201.
A Reverse Analysis of the Sylvester-Gallai Theorem.Victor Pambuccian - 2009 - Notre Dame Journal of Formal Logic 50 (3):245-260.
A Constructive Version of the Spectral Mapping Theorem.Douglas Bridges & Robin Havea - 2001 - Mathematical Logic Quarterly 47 (3):299-304.

Analytics

Added to PP index
2013-12-01

Total views
11 ( #729,891 of 2,285,641 )

Recent downloads (6 months)
1 ( #837,842 of 2,285,641 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature