Kurt Gödel, paper on the incompleteness theorems (1931)
In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. Amsterdam: North-Holland. pp. 917-925 (2005)
Abstract
This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number theory that are neither provable nor refutable. The first theorem is general in the sense that it applies to any axiomatic theory, which is ω-consistent, has an effective proof procedure, and is strong enough to represent basic arithmetic. Their importance lies in their generality: although proved specifically for extensions of system, the method Gödel used is applicable in a wide variety of circumstances. Gödel's results had a profound influence on the further development of the foundations of mathematics. It pointed the way to a reconceptualization of the view of axiomatic foundations.Author's Profile
My notes
Similar books and articles
On the philosophical relevance of Gödel's incompleteness theorems.Panu Raatikainen - 2005 - Revue Internationale de Philosophie 59 (4):513-534.
Gödel's Incompleteness Theorems.Panu Raatikainen - 2013 - The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.).
On an alleged refutation of Hilbert's program using gödel's first incompleteness theorem.Michael Detlefsen - 1990 - Journal of Philosophical Logic 19 (4):343 - 377.
Gödel's incompleteness theorems and computer science.Roman Murawski - 1997 - Foundations of Science 2 (1):123-135.
Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Arnold Beckmann, Ulrich Berger, Benedikt Löwe & John V. Tucker (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Berlin: Springer. pp. 575--583.
A Note on Boolos' Proof of the Incompleteness Theorem.Makoto Kikuchi - 1994 - Mathematical Logic Quarterly 40 (4):528-532.
Torkel Franzén, Gödel's Theorem: An Incomplete Guide to its Use and Abuse. [REVIEW]R. Zach - 2005 - History and Philosophy of Logic 26 (4):369-371.
Gödel’s Incompleteness Theorems and Physics.Newton C. A. Da Costa - 2011 - Principia: An International Journal of Epistemology 15 (3):453-459.
Query the Triple Loophole of the Proof of Gödel Incompleteness Theorem.Fangwen Yuan - 2008 - Proceedings of the Xxii World Congress of Philosophy 41:77-94.
Analytics
Added to PP
2017-10-10
Downloads
556 (#17,752)
6 months
62 (#19,635)
2017-10-10
Downloads
556 (#17,752)
6 months
62 (#19,635)
Historical graph of downloads