In Natasha Alechina, Andreas Herzig & Fei Liang,
Logic, Rationality, and Interaction: 9th International Workshop, LORI 2023, Jinan, China, October 26–29, 2023, Proceedings. Springer Nature Switzerland. pp. 94-108 (
2023)
Copy
BIBTEX
Abstract
An important component in the interventionist account of causal explanation is an interpretation of counterfactual conditionals as statements about consequences of hypothetical interventions. The interpretation receives a formal treatment in the framework of functional causal models. In Judea Pearl’s influential formulation, functional causal models are assumed to satisfy a “unique-solution” property; this class of Pearlian causal models includes the ones called recursive. Joseph Halpern showed that every recursive causal model is Lewisian, in the sense that from the causal model one can construct a possible worlds model in David Lewis’s well-known semantics that satisfies the exact same formulas in a certain language. Moreover, he demonstrated that some Pearlian (non-recursive) models are not Lewisian in this sense. This raises the question regarding the exact contour of Lewisian causal models. In this paper, we provide a characterization of the class of Lewisian causal models and a complete axiomatization with respect to this class. Our results have philosophically interesting consequences, two of which are especially worth noting. First, the class of Stalnakerian causal models, a subclass of Lewisian causal models, is precisely the class of Pearlian models that do not contain any cycle of counterfactual dependence (in a sense of counterfactual dependence akin to Lewis’s famous relation between distinct events). Second, a more natural class of causal models is actually a superclass of Lewisian causal models, the logic of which respects only weak centering rather than centering.