Y. Zhang,
M. Yi,
Z. K. Liu,
W. Li,
J. J. Lee,
R. G. Moore,
M. Hashimoto,
M. Nakajima,
H. Eisaki,
S. K. Mo,
Z. Hussain,
T. P. Devereaux,
Z. X. Shen &
D. H. Lu
Abstract
© 2016 American Physical Society.The nematic state, where a system is translationally invariant but breaks rotational symmetry, has drawn great attention recently due to the experimental observations of such a state in both cuprates and iron-based superconductors. The origin of nematicity and its possible tie to the pairing mechanism of high-Tc, however, still remain controversial. Here, we study the electronic structure of a multilayer FeSe film using angle-resolved photoemission spectroscopy. The band reconstruction in the nematic state is clearly delineated. We find that the energy splitting between dxz and dyz bands shows a nonmonotonic distribution in momentum space. From the Brillouin zone center to the Brillouin zone corner, the magnitude of splitting first decreases, then increases, and finally reaches the maximum value of ∼70 meV. Moreover, besides the dxz and dyz bands, band splitting was also observed on the dxy bands with a comparable energy scale around 45 meV. Our results suggest that the electronic anisotropy in the nematic state cannot be explained by a simple on-site ferro-orbital order. Instead, strong anisotropy exists in the hopping of all dxz,dyz, and dxy orbitals, the origin of which holds the key to a microscopic understanding of the nematicity in iron-based superconductors.