Complexity 2020:1-23 (2020)

The grasshopper optimization algorithm is a metaheuristic algorithm that mathematically models and simulates the behavior of the grasshopper swarm. Based on its flexible, adaptive search system, the innovative algorithm has an excellent potential to resolve optimization problems. This paper introduces an enhanced GOA, which overcomes the deficiencies in convergence speed and precision of the initial GOA. The improved algorithm is named MOLGOA, which combines various optimization strategies. Firstly, a probabilistic mutation mechanism is introduced into the basic GOA, which makes full use of the strong searchability of Cauchy mutation and the diversity of genetic mutation. Then, the effective factors of grasshopper swarm are strengthened by an orthogonal learning mechanism to improve the convergence speed of the algorithm. Moreover, the application of probability in this paper greatly balances the advantages of each strategy and improves the comprehensive ability of the original GOA. Note that several representative benchmark functions are used to evaluate and validate the proposed MOLGOA. Experimental results demonstrate the superiority of MOLGOA over other well-known methods both on the unconstrained problems and constrained engineering design problems.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.1155/2020/4873501
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 69,114
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
1 ( #1,539,707 of 2,499,228 )

Recent downloads (6 months)
1 ( #418,195 of 2,499,228 )

How can I increase my downloads?


Sorry, there are not enough data points to plot this chart.

My notes