Abstract
In the literature there has been evidence that a kind of relational structure called a quantum Kripke frame captures the essential characteristics of the orthogonality relation between pure states of quantum systems, and thus is a good qualitative mathematical model of quantum systems. This paper adds another piece of evidence by providing a tensor-product construction of two finite-dimensional quantum Kripke frames. We prove that this construction is exactly the qualitative counterpart of the tensor-product construction of two finite-dimensional Hilbert spaces over the complex numbers, and thus show that composition of quantum systems, especially the phenomenon of quantum entanglement, can be modelled in the framework of quantum Kripke frames. The assumptions used in our construction hint that we need complex numbers in quantum theory. Moreover, for this construction, we give a new and interesting characterization of linear maps of trace 0 in terms of the orthogonality relation.