$P_kappalambda$ Combinatorics II: The RK Ordering Beneath a Supercompact Measure

Journal of Symbolic Logic 51 (3):604-616 (1986)

Abstract
We characterize some large cardinal properties, such as $\mu$-measurability and $P^2(\kappa)$-measurability, in terms of ultrafilters, and then explore the Rudin-Keisler (RK) relations between these ultrafilters and supercompact measures on $P_\kappa(2^\kappa)$. This leads to the characterization of $2^\kappa$-supercompactness in terms of a measure on measure sequences, and also to the study of a certain natural subset, $\mathrm{Full}_\kappa$, of $P_\kappa(2^\kappa)$, whose elements code measures on cardinals less than $\kappa$. The hypothesis that $\mathrm{Full}_\kappa$ is stationary (a weaker assumption than $2^\kappa$-supercompactness) is equivalent to a higher order Lowenheim-Skolem property, and settles a question about directed versus chain-type unions on $P_\kappa\lambda$
Keywords $P_\kappa\lambda$ hypermeasurable   supercompact   Lowehneim-Skolem theorem
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 42,433
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2013-11-03

Total views
31 ( #268,251 of 2,255,408 )

Recent downloads (6 months)
8 ( #188,580 of 2,255,408 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature