Journal of Symbolic Logic 51 (3):604-616 (1986)

We characterize some large cardinal properties, such as $\mu$-measurability and $P^2(\kappa)$-measurability, in terms of ultrafilters, and then explore the Rudin-Keisler (RK) relations between these ultrafilters and supercompact measures on $P_\kappa(2^\kappa)$. This leads to the characterization of $2^\kappa$-supercompactness in terms of a measure on measure sequences, and also to the study of a certain natural subset, $\mathrm{Full}_\kappa$, of $P_\kappa(2^\kappa)$, whose elements code measures on cardinals less than $\kappa$. The hypothesis that $\mathrm{Full}_\kappa$ is stationary (a weaker assumption than $2^\kappa$-supercompactness) is equivalent to a higher order Lowenheim-Skolem property, and settles a question about directed versus chain-type unions on $P_\kappa\lambda$
Keywords $P_\kappa\lambda$ hypermeasurable   supercompact   Lowehneim-Skolem theorem
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 62,577
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
45 ( #236,169 of 2,446,647 )

Recent downloads (6 months)
1 ( #456,908 of 2,446,647 )

How can I increase my downloads?


My notes