Switch to: Citations

Add references

You must login to add references.
  1. On the origin of species by means of natural selection (excerpt).C. Darwin - 2014 - In Francisco José Ayala & John C. Avise (eds.), Essential readings in evolutionary biology. Baltimore: The Johns Hopkins University Press.
     
    Export citation  
     
    Bookmark   46 citations  
  • Evolution and the levels of selection.Samir Okasha - 2006 - New York: Oxford University Press.
    Does natural selection act primarily on individual organisms, on groups, on genes, or on whole species? The question of levels of selection - on which biologists and philosophers have long disagreed - is central to evolutionary theory and to the philosophy of biology. Samir Okasha's comprehensive analysis gives a clear account of the philosophical issues at stake in the current debate.
  • The origin of species by means of natural selection.Charles Darwin - 1859 - Franklin Center, Pa.: Franklin Library. Edited by J. W. Burrow.
    ORIGIN OF SPECIES. INTRODUCTION. When on board HMS 'Beagle,' as naturalist, I was ranch struck with certain facts in the distribution of the organic beings ...
    Direct download  
     
    Export citation  
     
    Bookmark   261 citations  
  • On the Origin of Species by Means of Natural Selection.Charles Darwin - 1897 - New York: Heritage Press. Edited by George W. Davidson.
    ... Difficulty of distinguishing between Varieties and Species — Origin of Domestic ... and Origin— Principle of Selection anciently followed, its Effects— ...
    Direct download  
     
    Export citation  
     
    Bookmark   309 citations  
  • Determinism, realism, and probability in evolutionary theory.Marcel Weber - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S213-.
    Recent discussion of the statistical character of evolutionary theory has centered around two positions: (1) Determinism combined with the claim that the statistical character is eliminable, a subjective interpretation of probability, and instrumentalism; (2) Indeterminism combined with the claim that the statistical character is ineliminable, a propensity interpretation of probability, and realism. I point out some internal problems in these positions and show that the relationship between determinism, eliminability, realism, and the interpretation of probability is more complex than previously assumed (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Determinism, Realism, and Probability in Evolutionary Theory.Marcel Weber - 2001 - Philosophy of Science 68 (S3):S213-S224.
    Recent discussion of the statistical character of evolutionary theory has centered around two positions: Determinism combined with the claim that the statistical character is eliminable, a subjective interpretation of probability, and instrumentalism; Indeterminism combined with the claim that the statistical character is ineliminable, a propensity interpretation of probability, and realism. I point out some internal problems in these positions and show that the relationship between determinism, eliminability, realism, and the interpretation of probability is more complex than previously assumed in this (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Causes That Make a Difference.C. Kenneth Waters - 2007 - Journal of Philosophy 104 (11):551-579.
    Biologists studying complex causal systems typically identify some factors as causes and treat other factors as background conditions. For example, when geneticists explain biological phenomena, they often foreground genes and relegate the cellular milieu to the background. But factors in the milieu are as causally necessary as genes for the production of phenotypic traits, even traits at the molecular level such as amino acid sequences. Gene-centered biology has been criticized on the grounds that because there is parity among causes, the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   197 citations  
  • The Selfish Gene. [REVIEW]Gunther S. Stent & Richard Dawkins - 1977 - Hastings Center Report 7 (6):33.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1709 citations  
  • NEVEN SESARDICMaking Sense of Heritability. [REVIEW]Neven Sesardic - 2007 - British Journal for the Philosophy of Science 58 (3):619-623.
    Direct download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Discussion note: Indeterminism, probability, and randomness in evolutionary theory.Alex Rosenberg - 2001 - Philosophy of Science 68 (4):536-544.
  • The Causal Structure of Evolutionary Theory.Grant Ramsey - 2016 - Australasian Journal of Philosophy 94 (3):421-434.
    One contentious debate in the philosophy of biology is that between the statisticalists and causalists. The former understand core evolutionary concepts like fitness and selection to be mere statistical summaries of underlying causal processes. In this view, evolutionary changes cannot be causally explained by selection or fitness. The causalist side, on the other hand, holds that populations can change in response to selection—one can cite fitness differences or driftability in causal explanations of evolutionary change. But, on the causalist side, it (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Driftability.Grant Ramsey - 2013 - Synthese 190 (17):3909-3928.
    In this paper, I argue (contra some recent philosophical work) that an objective distinction between natural selection and drift can be drawn. I draw this distinction by conceiving of drift, in the most fundamental sense, as an individual-level phenomenon. This goes against some other attempts to distinguish selection from drift, which have argued either that drift is a population-level process or that it is a population-level product. Instead of identifying drift with population-level features, the account introduced here can explain these (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Block Fitness.Grant Ramsey - 2006 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 37 (3):484-498.
    There are three related criteria that a concept of fitness should be able to meet: it should render the principle of natural selection non-tautologous and it should be explanatory and predictive. I argue that for fitness to be able to fulfill these criteria, it cannot be a property that changes over the course of an individual's life. Rather, I introduce a fitness concept--Block Fitness--and argue that an individual's genes and environment fix its fitness in such a way that each individual's (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  • A New Foundation for the Propensity Interpretation of Fitness.Charles H. Pence & Grant Ramsey - 2013 - British Journal for the Philosophy of Science 64 (4):851-881.
    The propensity interpretation of fitness (PIF) is commonly taken to be subject to a set of simple counterexamples. We argue that three of the most important of these are not counterexamples to the PIF itself, but only to the traditional mathematical model of this propensity: fitness as expected number of offspring. They fail to demonstrate that a new mathematical model of the PIF could not succeed where this older model fails. We then propose a new formalization of the PIF that (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   46 citations  
  • The propensity interpretation of fitness.Susan K. Mills & John H. Beatty - 1979 - Philosophy of Science 46 (2):263-286.
    The concept of "fitness" is a notion of central importance to evolutionary theory. Yet the interpretation of this concept and its role in explanations of evolutionary phenomena have remained obscure. We provide a propensity interpretation of fitness, which we argue captures the intended reference of this term as it is used by evolutionary theorists. Using the propensity interpretation of fitness, we provide a Hempelian reconstruction of explanations of evolutionary phenomena, and we show why charges of circularity which have been levelled (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   199 citations  
  • Interpretations of probability in evolutionary theory.Roberta L. Millstein - 2003 - Philosophy of Science 70 (5):1317-1328.
    Evolutionary theory (ET) is teeming with probabilities. Probabilities exist at all levels: the level of mutation, the level of microevolution, and the level of macroevolution. This uncontroversial claim raises a number of contentious issues. For example, is the evolutionary process (as opposed to the theory) indeterministic, or is it deterministic? Philosophers of biology have taken different sides on this issue. Millstein (1997) has argued that we are not currently able answer this question, and that even scientific realists ought to remain (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Are random drift and natural selection conceptually distinct?Roberta L. Millstein - 2002 - Biology and Philosophy 17 (1):33-53.
    The latter half of the twentieth century has been marked by debates in evolutionary biology over the relative significance of natural selection and random drift: the so-called “neutralist/selectionist” debates. Yet John Beatty has argued that it is difficult, if not impossible, to distinguish the concept of random drift from the concept of natural selection, a claim that has been accepted by many philosophers of biology. If this claim is correct, then the neutralist/selectionist debates seem at best futile, and at worst, (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   101 citations  
  • Nongenetic selection and nongenetic inheritance.Matteo Mameli - 2004 - British Journal for the Philosophy of Science 55 (1):35-71.
    According to the received view of evolution, only genes are inherited. From this view it follows that only genetically-caused phenotypic variation is selectable and, thereby, that all selection is at bottom genetic selection. This paper argues that the received view is wrong. In many species, there are intergenerationally-stable phenotypic differences due to environmental differences. Natural selection can act on these nongenetically-caused phenotypic differences in the same way it acts on genetically-caused phenotypic differences. Some selection is at bottom nongenetic selection. The (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   52 citations  
  • Interpreting Heritability Causally.Kate E. Lynch & Pierrick Bourrat - 2017 - Philosophy of Science 84 (1):14-34.
    A high heritability estimate usually corresponds to a situation in which trait variation is largely caused by genetic variation. However, in some cases of gene-environment covariance, causal intuitions about the sources of trait difference can vary, leading experts to disagree as to how the heritability estimate should be interpreted. We argue that the source of contention for these cases is an inconsistency in the interpretation of the concepts ‘genotype’, ‘phenotype’, and ‘environment’. We propose an interpretation of these terms under which (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Evolutionary Gene and the Extended Evolutionary Synthesis.Qiaoying Lu & Pierrick Bourrat - 2017 - British Journal for the Philosophy of Science 69 (3):775-800.
    Advocates of an ‘extended evolutionary synthesis’ have claimed that standard evolutionary theory fails to accommodate epigenetic inheritance. The opponents of the extended synthesis argue that the evidence for epigenetic inheritance causing adaptive evolution in nature is insufficient. We suggest that the ambiguity surrounding the conception of the gene represents a background semantic issue in the debate. Starting from Haig’s gene-selectionist framework and Griffiths and Neumann-Held’s notion of the evolutionary gene, we define senses of ‘gene’, ‘environment’, and ‘phenotype’ in a way (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • Dialectics and reductionism in ecology.Richard Levins & Richard Lewontin - 1980 - Synthese 43 (1):47 - 78.
    Biology above the level of the individual organism ? population ecology and genetics, community ecology, biogeography and evolution ? requires the study of intrinsically complex systems. But the dominant philosophies of western science have proven to be inadequate for the study of complexity:(1)The reductionist myth of simplicity leads its advocates to isolate parts as completely as possible and study these parts. It underestimates the importance of interactions in theory, and its recommendations for practice (in agricultural programs or conservation and environmental (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • The statistical character of evolutionary theory.Barbara L. Horan - 1994 - Philosophy of Science 61 (1):76-95.
    This paper takes a critical look at the idea that evolutionary theory is a statistical theory. It argues that despite the strong instrumental motivation for statistical theories, they are not necessary to explain deterministic systems. Biological evolution is fundamentally a result of deterministic processes. Hence, a statistical theory is not necessary for describing the evolutionary forces of genetic drift and natural selection, nor is it needed for describing the fitness of organisms. There is a computational advantage to the statistical theory (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • The strategic gene.David Haig - 2012 - Biology and Philosophy 27 (4):461-479.
    Abstract Gene-selectionists define fundamental terms in non-standard ways. Genes are determinants of difference. Phenotypes are defined as a gene’s effects relative to some alternative whereas the environment is defined as all parts of the world that are shared by the alternatives being compared. Environments choose among phenotypes and thereby choose among genes. By this process, successful gene sequences become stores of information about what works in the environment. The strategic gene is defined as a set of gene tokens that combines (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  • Is indeterminism the source of the statistical character of evolutionary theory?Leslie Graves, Barbara L. Horan & Alex Rosenberg - 1999 - Philosophy of Science 66 (1):140-157.
    We argue that Brandon and Carson's (1996) "The Indeterministic Character of Evolutionary Theory" fails to identify any indeterminism that would require evolutionary theory to be a statistical or probabilistic theory. Specifically, we argue that (1) their demonstration of a mechanism by which quantum indeterminism might "percolate up" to the biological level is irrelevant; (2) their argument that natural selection is indeterministic because it is inextricably connected with drift fails to join the issue with determinism; and (3) their view that experimental (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • The Dimensions of Selection.Peter Godfrey-Smith & Richard Lewontin - 1993 - Philosophy of Science 60 (3):373-395.
    Proponents of genic selectionism have claimed that evolutionary processes normally viewed as selection on individuals can be "represented" as selection on alleles. This paper discusses the relationship between mathematical questions about the formal requirements upon state spaces necessary for the representation of different types of evolutionary processes and causal questions about the units of selection in such processes.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Conditions for Evolution by Natural Selection.Peter Godfrey-Smith - 2007 - Journal of Philosophy 104 (10):489-516.
    Both biologists and philosophers often make use of simple verbal formulations of necessary and sufficient conditions for evolution by natural selection (ENS). Such summaries go back to Darwin's Origin of Species (especially the "Recapitulation"), but recent ones are more compact.1 Perhaps the most commonly cited formulation is due to Lewontin.2 These summaries tend to have three or four conditions, where the core requirement is a combination of variation, heredity, and fitness differences. The summaries are employed in several ways. First, they (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   63 citations  
  • Increasingly Radical Claims about Heredity and Fitness.Eugene Earnshaw-Whyte - 2012 - Philosophy of Science 79 (3):396-412.
    On the classical account of evolution by natural selection found in Lewontin and many subsequent authors, ENS is conceived as involving three key ingredients: phenotypic variation, fitness differences, and heredity. Through the analysis of three problem cases involving heredity, I argue that the classical conception is substantially flawed, showing that heredity is not required for selection. I consider further problems with the classical account of ENS arising from conflations between three distinct senses of the central concept of ‘fitness’ and offer (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Twenty-one arguments against propensity analyses of probability.Antony Eagle - 2004 - Erkenntnis 60 (3):371–416.
    I argue that any broadly dispositional analysis of probability will either fail to give an adequate explication of probability, or else will fail to provide an explication that can be gainfully employed elsewhere (for instance, in empirical science or in the regulation of credence). The diversity and number of arguments suggests that there is little prospect of any successful analysis along these lines.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   46 citations  
  • The Propensity Interpretation of Fitness and the Propensity Interpretation of Probability.Isabelle Drouet & Francesca Merlin - 2015 - Erkenntnis 80 (S3):457-468.
    The paper provides a new critical perspective on the propensity interpretation of fitness, by investigating its relationship to the propensity interpretation of probability. Two main conclusions are drawn. First, the claim that fitness is a propensity cannot be understood properly: fitness is not a propensity in the sense prescribed by the propensity interpretation of probability. Second, this interpretation of probability is inessential for explanations proposed by the PIF in evolutionary biology. Consequently, interpreting the probabilistic dimension of fitness in terms of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Moving past the levels of selection debates: Samir Okasha, Evolution and the levels of selection, Oxford University Press, Oxford, 2006.Stephen M. Downes - 2009 - Biology and Philosophy 24 (5):703-709.
  • Darwin's Dangerous Idea: Evolution and the Meanings of Life.David L. Hull - 1997 - British Journal for the Philosophy of Science 48 (3):435-438.
  • Adaptation and Evolutionary Theory.Robert N. Brandon - 1978 - Studies in History and Philosophy of Science Part A 9 (3):181.
  • Why the missing heritability might not be in the DNA.Pierrick Bourrat, Qiaoying Lu & Eva Jablonka - 2017 - Bioessays 39 (7):1700067.
    Graphical AbstractThere are four major hypotheses (H1, H2, H3, and H4) as to the source of missing heritability. We propose that estimates obtained from GWAS underestimate heritability by not taking into account non-DNA (epigenetic) sources of heritability. Taking those factors into account (H4) should result in increased heritability estimates.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Natural selection and the reference grain problem.Pierrick Bourrat - 2020 - Studies in History and Philosophy of Science Part A 80:1-8.
  • Natural Selection and Drift as Individual-Level Causes of Evolution.Pierrick Bourrat - 2018 - Acta Biotheoretica 66 (3):159-176.
    In this paper I critically evaluate Reisman and Forber’s :1113–1123, 2005) arguments that drift and natural selection are population-level causes of evolution based on what they call the manipulation condition. Although I agree that this condition is an important step for identifying causes for evolutionary change, it is insufficient. Following Woodward, I argue that the invariance of a relationship is another crucial parameter to take into consideration for causal explanations. Starting from Reisman and Forber’s example on drift and after having (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • How to Read ‘Heritability’ in the Recipe Approach to Natural Selection.Pierrick Bourrat - 2015 - British Journal for the Philosophy of Science 66 (4):883-903.
    There are two ways evolution by natural selection is conceptualized in the literature. One provides a ‘recipe’ for ENS incorporating three ingredients: variation, differences in fitness, and heritability. The other provides formal equations of evolutionary change and partitions out selection from other causes of evolutionary changes such as transmission biases or drift. When comparing the two approaches there seems to be a tension around the concept of heritability. A recent claim has been made that the recipe approach is flawed and (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Fitness, probability and the principles of natural selection.Frederic Bouchard & Alexander Rosenberg - 2004 - British Journal for the Philosophy of Science 55 (4):693-712.
    We argue that a fashionable interpretation of the theory of natural selection as a claim exclusively about populations is mistaken. The interpretation rests on adopting an analysis of fitness as a probabilistic propensity which cannot be substantiated, draws parallels with thermodynamics which are without foundations, and fails to do justice to the fundamental distinction between drift and selection. This distinction requires a notion of fitness as a pairwise comparison between individuals taken two at a time, and so vitiates the interpretation (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   91 citations  
  • From survivors to replicators: evolution by natural selection revisited.Pierrick Bourrat - 2014 - Biology and Philosophy 29 (4):517-538.
    For evolution by natural selection to occur it is classically admitted that the three ingredients of variation, difference in fitness and heredity are necessary and sufficient. In this paper, I show using simple individual-based models, that evolution by natural selection can occur in populations of entities in which neither heredity nor reproduction are present. Furthermore, I demonstrate by complexifying these models that both reproduction and heredity are predictable Darwinian products (i.e. complex adaptations) of populations initially lacking these two properties but (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Explaining Drift from a Deterministic Setting.Pierrick Bourrat - 2017 - Biological Theory 12 (1):27-38.
    Drift is often characterized in statistical terms. Yet such a purely statistical characterization is ambiguous for it can accept multiple physical interpretations. Because of this ambiguity it is important to distinguish what sorts of processes can lead to this statistical phenomenon. After presenting a physical interpretation of drift originating from the most popular interpretation of fitness, namely the propensity interpretation, I propose a different one starting from an analysis of the concept of drift made by Godfrey-Smith. Further on, I show (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Dissolving the Missing Heritability Problem.Pierrick Bourrat & Qiaoying Lu - 2017 - Philosophy of Science 84 (5):1055-1067.
    Heritability estimates obtained from genome-wide association studies are much lower than those of traditional quantitative methods. This phenomenon has been called the “missing heritability problem.” By analyzing and comparing GWAS and traditional quantitative methods, we first show that the estimates obtained from the latter involve some terms other than additive genetic variance, while the estimates from the former do not. Second, GWAS, when used to estimate heritability, do not take into account additive epigenetic factors transmitted across generations, while traditional quantitative (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • Distinguishing Natural Selection from Other Evolutionary Processes in the Evolution of Altruism.Pierrick Bourrat - 2015 - Biological Theory 10 (4):311-321.
    Altruism is one of the most studied topics in theoretical evolutionary biology. The debate surrounding the evolution of altruism has generally focused on the conditions under which altruism can evolve and whether it is better explained by kin selection or multilevel selection. This debate has occupied the forefront of the stage and left behind a number of equally important questions. One of them, which is the subject of this article, is whether the word “selection” in “kin selection” and “multilevel selection” (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Chance and natural selection.John Beatty - 1984 - Philosophy of Science 51 (2):183-211.
    Among the liveliest disputes in evolutionary biology today are disputes concerning the role of chance in evolution--more specifically, disputes concerning the relative evolutionary importance of natural selection vs. so-called "random drift". The following discussion is an attempt to sort out some of the broad issues involved in those disputes. In the first half of this paper, I try to explain the differences between evolution by natural selection and evolution by random drift. On some common construals of "natural selection", those two (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   101 citations  
  • Drift: A historical and conceptual overview.Anya Plutynski - 2007 - Biological Theory 2 (2):156-167.
    There are several different ways in which chance affects evolutionary change. That all of these processes are called “random genetic drift” is in part a due to common elements across these different processes, but is also a product of historical borrowing of models and language across different levels of organization in the biological hierarchy. A history of the concept of drift will reveal the variety of contexts in which drift has played an explanatory role in biology, and will shed light (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • Making Sense of Heritability.Neven Sesardic - 2005 - Cambridge University Press.
    In this book, Neven Sesardic defends the view that it is both possible and useful to measure the separate contributions of heredity and environment to the explanation of human psychological differences. He critically examines the view - very widely accepted by scientists, social scientists and philosophers of science - that heritability estimates have no causal implications and are devoid of any interest. In a series of clearly written chapters he introduces the reader to the problems and subjects the arguments to (...)
    Direct download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Darwinian Populations and Natural Selection.Peter Godfrey-Smith - 2009 - Oxford, GB: Oxford University Press.
    The book presents a new way of understanding Darwinism and evolution by natural selection, combining work in biology, philosophy, and other fields.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   310 citations  
  • Replication and reproduction.John Wilkins & Pierrick Bourrat - 2018 - Stanford Encyclopedia of Philosophy.
  • Interpretations of probability.Alan Hájek - 2007 - Stanford Encyclopedia of Philosophy.
  • Heritability.Stephen M. Downes - 2015 - Stanford Encyclopedia of Philosophy.
  • Individuality and Selection.David L. Hull - 1980 - Annual Review of Ecology and Systematics 11:311-332.
     
    Export citation  
     
    Bookmark   230 citations  
  • Evolution and the Levels of Selection.Samir Okasha - 2009 - Critica 41 (123):162-170.
    No categories
     
    Export citation  
     
    Bookmark   286 citations