References in:
Add references
You must login to add references.
|
|
|
|
Natural languages contain many layers of sequential structure, from the distribution of phonemes within words to the distribution of phrases within utterances. However, most research modeling language acquisition using artificial languages has focused on only one type of distributional structure at a time. In two experiments, we investigated adult learning of an artificial language that contains dependencies between both adjacent and non-adjacent words. We found that learners rapidly acquired both types of regularities and that the strength of the adjacent statistics (...) |
|
Cross-situational word learning, like any statistical learning problem, involves tracking the regularities in the environment. However, the information that learners pick up from these regularities is dependent on their learning mechanism. This article investigates the role of one type of mechanism in statistical word learning: competition. Competitive mechanisms would allow learners to find the signal in noisy input and would help to explain the speed with which learners succeed in statistical learning tasks. Because cross-situational word learning provides information at multiple (...) No categories |
|
Recent research has demonstrated that word learners can determine word-referent mappings by tracking co-occurrences across multiple ambiguous naming events. The current study addresses the mechanisms underlying this capacity to learn words cross-situationally. This replication and extension of Yu and Smith (2007) investigates the factors influencing both successful cross-situational word learning and mis-mappings. Item analysis and error patterns revealed that the co-occurrence structure of the learning environment as well as the context of the testing environment jointly affected learning across observations. Learners (...) No categories |
|
It is unclear how children learn labels for multiple overlapping categories such as “Labrador,” “dog,” and “animal.” Xu and Tenenbaum suggested that learners infer correct meanings with the help of Bayesian inference. They instantiated these claims in a Bayesian model, which they tested with preschoolers and adults. Here, we report data testing a developmental prediction of the Bayesian model—that more knowledge should lead to narrower category inferences when presented with multiple subordinate exemplars. Two experiments did not support this prediction. Children (...) No categories |
|
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership (...) No categories |
|
No categories |
|
|
|
|
|
|
|
Learning to map words onto their referents is difficult, because there are multiple possibilities for forming these mappings. Cross-situational learning studies have shown that word-object mappings can be learned across multiple situations, as can verbs when presented in a syntactic context. However, these previous studies have presented either nouns or verbs in ambiguous contexts and thus bypass much of the complexity of multiple grammatical categories in speech. We show that noun word learning in adults is robust when objects are moving, (...) |
|
|
|
|
|
|