Switch to: Citations

Add references

You must login to add references.
  1. A Subject with no Object.Zoltan Gendler Szabo, John P. Burgess & Gideon Rosen - 1999 - Philosophical Review 108 (1):106.
    This is the first systematic survey of modern nominalistic reconstructions of mathematics, and for this reason alone it should be read by everyone interested in the philosophy of mathematics and, more generally, in questions concerning abstract entities. In the bulk of the book, the authors sketch a common formal framework for nominalistic reconstructions, outline three major strategies such reconstructions can follow, and locate proposals in the literature with respect to these strategies. The discussion is presented with admirable precision and clarity, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   160 citations  
  • Mathematical knowledge.Mark Steiner - 1975 - Ithaca: Cornell University Press.
  • Realism in mathematics.Penelope Maddy - 1990 - New York: Oxford University Prress.
    Mathematicians tend to think of themselves as scientists investigating the features of real mathematical things, and the wildly successful application of mathematics in the physical sciences reinforces this picture of mathematics as an objective study. For philosophers, however, this realism about mathematics raises serious questions: What are mathematical things? Where are they? How do we know about them? Offering a scrupulously fair treatment of both mathematical and philosophical concerns, Penelope Maddy here delineates and defends a novel version of mathematical realism. (...)
  • Ontology and the vicious-circle principle.Charles S. Chihara - 1973 - Ithaca [N.Y.]: Cornell University Press.
  • Mathematics, Models, and Modality: Selected Philosophical Essays.John P. Burgess - 2008 - Cambridge University Press.
    John Burgess is the author of a rich and creative body of work which seeks to defend classical logic and mathematics through counter-criticism of their nominalist, intuitionist, relevantist, and other critics. This selection of his essays, which spans twenty-five years, addresses key topics including nominalism, neo-logicism, intuitionism, modal logic, analyticity, and translation. An introduction sets the essays in context and offers a retrospective appraisal of their aims. The volume will be of interest to a wide range of readers across philosophy (...)
     
    Export citation  
     
    Bookmark   7 citations  
  • Rigor and Structure.John P. Burgess - 2015 - Oxford, England: Oxford University Press UK.
    While we are commonly told that the distinctive method of mathematics is rigorous proof, and that the special topic of mathematics is abstract structure, there has been no agreement among mathematicians, logicians, or philosophers as to just what either of these assertions means. John P. Burgess clarifies the nature of mathematical rigor and of mathematical structure, and above all of the relation between the two, taking into account some of the latest developments in mathematics, including the rise of experimental mathematics (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   39 citations  
  • Science Without Numbers: A Defence of Nominalism.Hartry H. Field - 1980 - Princeton, NJ, USA: Princeton University Press.
    Science Without Numbers caused a stir in 1980, with its bold nominalist approach to the philosophy of mathematics and science. It has been unavailable for twenty years and is now reissued in a revised edition with a substantial new preface presenting the author's current views and responses to the issues raised in subsequent debate.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   553 citations  
  • The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
     
    Export citation  
     
    Bookmark   97 citations