Switch to: Citations

Add references

You must login to add references.
  1. Probabilistic theories: What is special about quantum mechanics?Giacomo Mauro D'Ariano - 2010 - In Alisa Bokulich & Gregg Jaeger (eds.), Philosophy of quantum information and entanglement. New York: Cambridge University Press.
  • Scientific explanation.Richard Bevan Braithwaite - unknown
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   233 citations  
  • Patterns of discovery.Norwood Russell Hanson - 1958 - Cambridge [Eng.]: University Press.
    In this 1958 book, Professor Hanson turns to an equally important but comparatively neglected subject, the philosophical aspects of research and discovery.
  • The Structure of Scientific Revolutions.Thomas Samuel Kuhn - 1962 - Chicago: University of Chicago Press. Edited by Otto Neurath.
    A scientific community cannot practice its trade without some set of received beliefs. These beliefs form the foundation of the "educational initiation that prepares and licenses the student for professional practice". The nature of the "rigorous and rigid" preparation helps ensure that the received beliefs are firmly fixed in the student's mind. Scientists take great pains to defend the assumption that scientists know what the world is like...To this end, "normal science" will often suppress novelties which undermine its foundations. Research (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2705 citations  
  • The Structure of Scientific Revolutions.Thomas S. Kuhn - 1962 - Chicago, IL: University of Chicago Press. Edited by Ian Hacking.
  • Philosophical Foundations of Physics;.Rudolf Carnap - 1966 - New York: Basic Books.
  • A Foundational Principle for Quantum Mechanics.Anton Zeilinger - 1999 - Foundations of Physics 29 (4):631-643.
    In contrast to the theories of relativity, quantum mechanics is not yet based on a generally accepted conceptual foundation. It is proposed here that the missing principle may be identified through the observation that all knowledge in physics has to be expressed in propositions and that therefore the most elementary system represents the truth value of one proposition, i.e., it carries just one bit of information. Therefore an elementary system can only give a definite result in one specific measurement. The (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   78 citations  
  • On Fine's Resolution of the EPR-Bell Problem.László E. Szabó - 2000 - Foundations of Physics 30 (11):1891-1909.
    The aim of this paper is to provide an introduction to Fine's interpretation of quantum mechanics and to show how it can solve the EPR-Bell problem. In the real spin-correlation experiments the detection/emission inefficiency is usually ascribed to independent random detection errors, and treated by the “enhancement hypothesis.” In Fine's interpretation the detection inefficiency is an effect not only of the random errors in the analyzer + detector equipment, but is also the manifestation of a pre-settled (hidden) property of the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Failure to Perform a Loophole-Free Test of Bell’s Inequality Supports Local Realism.Emilio Santos - 2004 - Foundations of Physics 34 (11):1643-1673.
    It is argued that the long standing failure to show an uncontroversial, loophole-free, empirical violation of a Bell inequality should be interpreted as a support to local realism. After defining realism and locality, this as relativistic causality, the performed experimental tests of Bell’s inequalities are commented. It is pointed out that, without any essential modification of quantum mechanics, the theory might be compatible with local realism.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum theoretical concepts of measurement: Part I.James L. Park - 1968 - Philosophy of Science 35 (3):205-231.
    The overall purpose of this paper is to clarify the physical meaning and epistemological status of the term 'measurement' as used in quantum theory. After a review of the essential logical structure of quantum physics, Part I presents interpretive discussions contrasting the quantal concepts observable and ensemble with their classical ancestors along the lines of Margenau's latency theory. Against this background various popular ideas concerning the nature of quantum measurement are critically surveyed. The analysis reveals that, in addition to internal (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Quantum theoretical concepts of measurement: Part II.James L. Park - 1968 - Philosophy of Science 35 (4):389-411.
    This portion of the essay concludes a two-part paper, Part I of which appeared in an earlier issue of this Journal. Part II begins with a careful study of the quantum description of real experiments in order to motivate a proposal that two distinct quantum theoretical measurement constructs should be recognized, both of which must be distinguished from the concept of preparation. The different epistemological roles of these concepts are compared and explained. It is then concluded that the only possible (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Against 'Realism'.Travis Norsen - 2007 - Foundations of Physics 37 (3):311-340.
    We examine the prevalent use of the phrase “local realism” in the context of Bell’s Theorem and associated experiments, with a focus on the question: what exactly is the ‘realism’ in ‘local realism’ supposed to mean? Carefully surveying several possible meanings, we argue that all of them are flawed in one way or another as attempts to point out a second premise (in addition to locality) on which the Bell inequalities rest, and (hence) which might be rejected in the face (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • Aspects of scientific explanation.Carl G. Hempel - 1965 - In Philosophy and Phenomenological Research. Free Press. pp. 504.
  • Representing and Intervening. [REVIEW]Adam Morton - 1986 - Philosophical Review 95 (4):606-611.
  • Truth versus testability in quantum logic.Claudio Garola - 1992 - Erkenntnis 37 (2):197 - 222.
    We forward an epistemological perspective regarding non-classical logics which restores the universality of logic in accordance with the thesis of global pluralism. In this perspective every non-classical truth-theory is actually a theory of some metalinguistic concept which does not coincide with the concept of truth (described by Tarski's truth theory). We intend to apply this point of view to Quantum Logic (QL) in order to prove that its structure properties derive from properties of the metalinguistic concept of testability in Quantum (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • The theoretical apparatus of semantic realism: A new language for classical and quantum physics. [REVIEW]Claudio Garola & Luigi Solombrino - 1996 - Foundations of Physics 26 (9):1121-1164.
    The standard interpretation of quantum physics (QP) and some recent generalizations of this theory rest on the adoption of a rerificationist theory of truth and meaning, while most proposals for modifying and interpreting QP in a “realistic” way attribute an ontological status to theoretical physical entities (ontological realism). Both terms of this dichotomy are criticizable, and many quantum paradoxes can be attributed to it. We discuss a new viewpoint in this paper (semantic realism, or briefly SR), which applies both to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Semantic realism versus EPR-Like paradoxes: The Furry, Bohm-Aharonov, and Bell paradoxes.Claudio Garola & Luigi Solombrino - 1996 - Foundations of Physics 26 (10):1329-1356.
    We prove that the general scheme for physical theories that we have called semantic realism(SR) in some previous papers copes successfully with a number of EPR-like paradoxes when applied to quantum physics (QP). In particular, we consider the old arguments by Furry and Bohm- Aharonov and show that they are not valid within a SR framework. Moreover, we consider the Bell-Kochen-Specker und the Bell theorems that should prove that QP is inherently contextual and nonlocal, respectively, and show that they can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Recovering Quantum Logic Within an Extended Classical Framework.Claudio Garola & Sandro Sozzo - 2013 - Erkenntnis 78 (2):399-419.
    We present a procedure which allows us to recover classical and nonclassical logical structures as concrete logics associated with physical theories expressed by means of classical languages. This procedure consists in choosing, for a given theory ${{\mathcal{T}}}$ and classical language ${{\fancyscript{L}}}$ expressing ${{\mathcal{T}}, }$ an observative sublanguage L of ${{\fancyscript{L}}}$ with a notion of truth as correspondence, introducing in L a derived and theory-dependent notion of C-truth (true with certainty), defining a physical preorder $\prec$ induced by C-truth, and finally selecting (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Objectivity versus Nonobjectivity in Quantum Mechanics.Claudio Garola - 2000 - Foundations of Physics 30 (9):1539-1565.
    Nonobjectivity of physical properties enters physics with the standard interpretation of quantum mechanics (QM), and a number of paradoxes of this theory follow from it. It seems, however, based on sound physical arguments (double slit experiment, Heisenberg's principle, Bell–Kochen–Specker theorem, etc.), so that most physicists think that avoiding it is impossible. We discuss these arguments here and show that they can be criticized from a physical viewpoint. Our criticism proves that nonobjectivity must be considered an epistemological choice rather than an (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Locality and Measurements Within the SR Model for an Objective Interpretation of Quantum Mechanics.Claudio Garola & Jarosław Pykacz - 2004 - Foundations of Physics 34 (3):449-475.
    One of the authors has recently propounded an SR model which shows, circumventing known no-go theorems, that an objective interpretation of quantum mechanics is possible. We consider here compound physical systems and show why the proofs of nonlocality of QM do not hold within the SR model, which is slightly simplified in this paper. We also discuss quantum measurement theory within this model, note that the objectification problem disappears since the measurement of any property simply reveals its unknown value, and (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Generalized Observables, Bell’s Inequalities and Mixtures in the ESR Model for QM.Claudio Garola & Sandro Sozzo - 2011 - Foundations of Physics 41 (3):424-449.
    The extended semantic realism (ESR) model proposes a new theoretical perspective which embodies the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) into a noncontextual framework, reinterpreting quantum probabilities as conditional instead of absolute. We provide in this review an overall view on the present status of our research on this topic. We attain in a new, shortened way a mathematical representation of the generalized observables introduced by the ESR model and a generalization of the projection postulate of elementary (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Simple Model for an Objective Interpretation of Quantum Mechanics.Claudio Garola - 2002 - Foundations of Physics 32 (10):1597-1615.
    An SR model is presented that shows how an objective (noncontextual and local) interpretation of quantum mechanics can be constructed, which contradicts some well-established beliefs following from the standard interpretation of the theory and from known no-go theorems. The SR model is not a hidden variables theory in the standard sense, but it can be considered a hidden parameters theory which satisfies constraints that are weaker than those usually imposed on standard hidden variables theories. The SR model is also extended (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Some local models for correlation experiments.Arthur Fine - 1982 - Synthese 50 (2):279 - 294.
    This paper constructs two classes of models for the quantum correlation experiments used to test the Bell-type inequalities, synchronization models and prism models. Both classes employ deterministic hidden variables, satisfy the causal requirements of physical locality, and yield precisely the quantum mechanical statistics. In the synchronization models, the joint probabilities, for each emission, do not factor in the manner of stochastic independence, showing that such factorizability is not required for locality. In the prism models the observables are not random variables (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  • Correlations and efficiency: Testing the Bell inequalities. [REVIEW]Arthur Fine - 1989 - Foundations of Physics 19 (5):453-478.
    This paper examines the efficiency problem involved in experimental tests of so-called “local” hidden variables. It separates the phenomenological locality at issue in the Bell case from Einstein's different conception of locality, and shows how phenomenological locality also differs from the factorizability needed to derive the Bell inequalities in the stochastic case. It then pursues the question of whether factorizable, local models (or, equivalently, deterministic ones) exist for the experiments designed to test the Bell inequalities, thus rendering the experimental argument (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Against Method: Outline of an Anarchistic Theory of Knowledge.V. J. McGill - 1976 - Philosophy and Phenomenological Research 37 (1):129-130.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   123 citations  
  • Against method: outline of an anarchistic theory of knowledge.Paul Feyerabend - 1974 - Atlantic Highlands, N.J.: Humanities Press.
    Paul Feyerabend's globally acclaimed work, which sparked and continues to stimulate fierce debate, examines the deficiencies of many widespread ideas about scientific progress and the nature of knowledge. Feyerabend argues that scientific advances can only be understood in a historical context. He looks at the way the philosophy of science has consistently overemphasized practice over method, and considers the possibility that anarchism could replace rationalism in the theory of knowledge. -- Amazon.com.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   220 citations  
  • Embedding Quantum Universes in Classical Ones.Cristian S. Calude, Peter H. Hertling & Karl Svozil - 1999 - Foundations of Physics 29 (3):349-379.
    Do the partial order and ortholattice operations of a quantum logic correspond to the logical implication and connectives of classical logic? Rephrased, How far might a classical understanding of quantum mechanics be, in principle, possible? A celebrated result of Kochen and Specker answers the above question in the negative. However, this answer is just one among various possible ones, not all negative. It is our aim to discuss the above question in terms of mappings of quantum worlds into classical ones, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Insolubility of the quantum measurement problem for unsharp observables.Paul Busch & Abner Shimony - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (4):397-404.
  • Insolubility of the quantum measurement problem for unsharp observables.Paul Busch & Abner Shimony - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (4):397-404.
  • Characterizing quantum theory in terms of information-theoretic constraints.Rob Clifton, Jeffrey Bub & Hans Halvorson - 2002 - Foundations of Physics 33 (11):1561-1591.
    We show that three fundamental information-theoretic constraints -- the impossibility of superluminal information transfer between two physical systems by performing measurements on one of them, the impossibility of broadcasting the information contained in an unknown physical state, and the impossibility of unconditionally secure bit commitment -- suffice to entail that the observables and state space of a physical theory are quantum-mechanical. We demonstrate the converse derivation in part, and consider the implications of alternative answers to a remaining open question about (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   111 citations  
  • Louis Osgood Kattsoff. Modality and probability. The philosophical review, vol. 46 (1937), pp. 78–85.Garrett Birkhoff & John von Neumann - 1937 - Journal of Symbolic Logic 2 (1):44-44.
  • Conceptual foundations of quantum mechanics.Bernard D' Espagnat - 1971 - Redwood City, Calif.: Addison-Wesley, Advanced Book Program.
    Conceptual Foundations of Quantum Mechanics provides a detailed view of the conceptual foundations and problems of quantum physics, and a clear and comprehensive account of the fundamental physical implications of the quantum formalism. This book deals with nonseparability, hidden variable theories, measurement theories and several related problems. Mathematical arguments are presented with an emphasis on simple but adequately representative cases. The conclusion incorporates a description of a set of relationships and concepts that could compose a legitimate view of the world.
    Direct download  
     
    Export citation  
     
    Bookmark   62 citations  
  • What is this thing called science?: An assessment of the nature and status of science and its methods.Alan Francis Chalmers - 1976 - St. Lucia, Q.: Univ. Of Queensland Press.
    Co-published with the University of Queensland Press. HPC holds rights in North America and U. S. Dependencies. Since its first publication in 1976, Alan Chalmers's highly regarded and widely read work--translated into eighteen languages--has become a classic introduction to the scientific method, known for its accessibility to beginners and its value as a resource for advanced students and scholars. In addition to overall improvements and updates inspired by Chalmers's experience as a teacher, comments from his readers, and recent developments in (...)
    Direct download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Representing and Intervening.Ian Hacking - 1983 - British Journal for the Philosophy of Science 35 (4):381-390.
     
    Export citation  
     
    Bookmark   732 citations  
  • The philosophy of quantum mechanics.Max Jammer - 1974 - New York,: Wiley. Edited by Max Jammer.
  • What Is This Thing Called Science?A. F. Chalmers - 1979 - Erkenntnis 14 (3):393-404.
    No categories
     
    Export citation  
     
    Bookmark   212 citations  
  • The Logic of Quantum Mechanics.Garrett Birkhoff, John Von Neumann, The Annals & No Oct - 2008 - 37 (4):823–843.
     
    Export citation  
     
    Bookmark   99 citations  
  • Hidden Variables and the Two Theorems of John Bell.N. David Mermin - 1993 - Reviews of Modern Physics 65:803--815.
    Although skeptical of the prohibitive power of no-hidden-variables theorems, John Bell was himself responsible for the two most important ones. I describe some recent versions of the lesser known of the two (familiar to experts as the "Kochen-Specker theorem") which have transparently simple proofs. One of the new versions can be converted without additional analysis into a powerful form of the very much better known "Bell's Theorem," thereby clarifying the conceptual link between these two results of Bell.
     
    Export citation  
     
    Bookmark   74 citations  
  • A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II.David Bohm - 1952 - Physical Review (85):166-193.
  • On the Einstein Podolsky Rosen paradox.J. S. Bell - 2004 [1964] - In Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press. pp. 14--21.
  • On the Problem of Hidden Variables in Quantum Mechanics.J. S. Bell - 2004 - In Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press. pp. 1--13.
  • Realistic Aspects in the Standard Interpretation of Quantum Mechanics.Claudia Garola & Sandro Sozzo - 2010 - Humana Mente 4 (13).
    The belief that quantum mechanics does not admit a realistic interpretation is widespread. According to some scholars concerned with the foundations of QM all existing interpretations of this theory presuppose instead a form of realism which consists in assuming that QM deals with individual objects and their properties. We uphold in the present paper that the arguments supporting the contextuality and the nonlocality of QM are a significant clue to the implicit adoption of stronger forms of realism. If these kinds (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Foundational Principle for Quantum Mechanics.Anton Zeilinger - 2019 - In Alberto Cordero (ed.), Philosophers Look at Quantum Mechanics. Springer Verlag.
    No categories
     
    Export citation  
     
    Bookmark   42 citations  
  • Bell's Theorem without Inequalities.Daniel M. Greenberger, Michael A. Horne, Abner Shimony & Anton Zeilenger - 1990 - American Journal of Physics 58:1131--1143.
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
  • Proper and improper separability.Christopher Gordon Timpson & Harvey Brown - unknown
    The distinction between proper and improper mixtures is a staple of the discussion of foundational questions in quantum mechanics. Here we note an analogous distinction in the context of the theory of entanglement. The terminology of `proper' versus `improper' separability is proposed to mark the distinction.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations