Switch to: Citations

References in:

Causal Control and Genetic Causation

Noûs 48 (3):450-465 (2012)

Add references

You must login to add references.
  1. Sensitive and insensitive causation.James Woodward - 2006 - Philosophical Review 115 (1):1-50.
  • Making things happen: a theory of causal explanation.James F. Woodward - 2003 - New York: Oxford University Press.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defenses, objections, and replies into a convincing defense of the core of his theory, which is that we can analyze causation by appeal to the notion of manipulation.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1620 citations  
  • Review of Woodward, Making Things Happen. [REVIEW]Michael Strevens - 2007 - Philosophy and Phenomenological Research 74 (1):233-249.
  • Causation in biology: Stability, specificity, and the choice of levels of explanation.James Woodward - 2010 - Biology and Philosophy 25 (3):287-318.
    This paper attempts to elucidate three characteristics of causal relationships that are important in biological contexts. Stability has to do with whether a causal relationship continues to hold under changes in background conditions. Proportionality has to do with whether changes in the state of the cause “line up” in the right way with changes in the state of the effect and with whether the cause and effect are characterized in a way that contains irrelevant detail. Specificity is connected both to (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   265 citations  
  • Marcel Weber: Philosophy of Experimental Biology: Cambridge University Press, Cambridge, 2005, USD 75.00, ISBN 0521829453 (hbk), 374 pp. [REVIEW]Jacob Stegenga - 2009 - Erkenntnis 71 (3):431-436.
    Philosophers have committed sins while studying science, it is said – philosophy of science focused on physics to the detriment of biology, reconstructed idealizations of scientific episodes rather than attending to historical details, and focused on theories and concepts to the detriment of experiments. Recent generations of philosophers of science have tried to atone for these sins, and by the 1980s the exculpation was in full swing. Marcel Weber’s Philosophy of Experimental Biology is a zenith mea culpa for philosophy of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   94 citations  
  • Causes That Make a Difference.C. Kenneth Waters - 2007 - Journal of Philosophy 104 (11):551-579.
    Biologists studying complex causal systems typically identify some factors as causes and treat other factors as background conditions. For example, when geneticists explain biological phenomena, they often foreground genes and relegate the cellular milieu to the background. But factors in the milieu are as causally necessary as genes for the production of phenotypic traits, even traits at the molecular level such as amino acid sequences. Gene-centered biology has been criticized on the grounds that because there is parity among causes, the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   197 citations  
  • Crick's Notion of Genetic Information and the 'Central Dogma' of Molecular Biology.Predrag Šustar - 2007 - British Journal for the Philosophy of Science 58 (1):13-24.
    An assessment is offered of the recent debate on information in the philosophy of biology, and an analysis is provided of the notion of information as applied in scientific practice in molecular genetics. In particular, this paper deals with the dependence of basic generalizations of molecular biology, above all the 'central dogma', on the socalled 'informational talk'. It is argued that talk of information in the 'central dogma' can be reduced to causal claims. In that respect, the primary aim of (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Crick's notion of genetic information and the ‘central dogma’ of molecular biology.Predrag Šustar - 2007 - British Journal for the Philosophy of Science 58 (1):13-24.
    An assessment is offered of the recent debate on information in the philosophy of biology, and an analysis is provided of the notion of information as applied in scientific practice in molecular genetics. In particular, this paper deals with the dependence of basic generalizations of molecular biology, above all the ‘central dogma’, on the so-called ‘informational talk’ (Maynard Smith [2000a]). It is argued that talk of information in the ‘central dogma’ can be reduced to causal claims. In that respect, the (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • The arbitrariness of the genetic code.Ulrich E. Stegmann - 2004 - Biology and Philosophy 19 (2):205-222.
    The genetic code has been regarded as arbitrary in the sense that the codon-amino acid assignments could be different than they actually are. This general idea has been spelled out differently by previous, often rather implicit accounts of arbitrariness. They have drawn on the frozen accident theory, on evolutionary contingency, on alternative causal pathways, and on the absence of direct stereochemical interactions between codons and amino acids. It has also been suggested that the arbitrariness of the genetic code justifies attributing (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • Genetic information as instructional content.Ulrich E. Stegmann - 2005 - Philosophy of Science 72 (3):425-443.
    The concept of genetic information is controversial because it attributes semantic properties to what seem to be ordinary biochemical entities. I argue that nucleic acids contain information in a semantic sense, but only about a limited range of effects. In contrast to other recent proposals, however, I analyze genetic information not in terms of a naturalized account of biological functions, but instead in terms of the way in which molecules determine their products during processes known as template-directed syntheses. I argue (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • The concept of information in biology.John Maynard Smith - 2000 - Philosophy of Science 67 (2):177-194.
    The use of informational terms is widespread in molecular and developmental biology. The usage dates back to Weismann. In both protein synthesis and in later development, genes are symbols, in that there is no necessary connection between their form (sequence) and their effects. The sequence of a gene has been determined, by past natural selection, because of the effects it produces. In biology, the use of informational terms implies intentionality, in that both the form of the signal, and the response (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   132 citations  
  • Representation in the genome and in other inheritance systems.Nicholas Shea - 2007 - Biology and Philosophy 22 (3):313-331.
    There is ongoing controversy as to whether the genome is a representing system. Although it is widely recognised that DNA carries information, both correlating with and coding for various outcomes, neither of these implies that the genome has semantic properties like correctness or satisfaction conditions, In the Scope of Logic, Methodology, and the Philosophy of Sciences, Vol. II. Kluwer, Dordrecht, pp. 387–400). Here a modified version of teleosemantics is applied to the genome to show that it does indeed have semantic (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   60 citations  
  • Computers.Gualtiero Piccinini - 2008 - Pacific Philosophical Quarterly 89 (1):32–73.
    I offer an explication of the notion of computer, grounded in the practices of computability theorists and computer scientists. I begin by explaining what distinguishes computers from calculators. Then, I offer a systematic taxonomy of kinds of computer, including hard-wired versus programmable, general-purpose versus special-purpose, analog versus digital, and serial versus parallel, giving explicit criteria for each kind. My account is mechanistic: which class a system belongs in, and which functions are computable by which system, depends on the system's mechanistic (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  • Is Actual Difference Making Actually Different?Robert Northcott - 2009 - Journal of Philosophy 106 (11):629-633.
    This paper responds to Kenneth Waters’s account of actual difference making. Among other things, I argue that although Waters is right that researchers may sometimes be justified in focusing on genes rather than other causes of phenotypic traits, he is wrong that the apparatus of actual difference makers overcomes the traditional causal parity thesis.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Dimensions of scientific law.Sandra D. Mitchell - 2000 - Philosophy of Science 67 (2):242-265.
    Biological knowledge does not fit the image of science that philosophers have developed. Many argue that biology has no laws. Here I criticize standard normative accounts of law and defend an alternative, pragmatic approach. I argue that a multidimensional conceptual framework should replace the standard dichotomous law/ accident distinction in order to display important differences in the kinds of causal structure found in nature and the corresponding scientific representations of those structures. To this end I explore the dimensions of stability, (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   118 citations  
  • Flow of Information in Molecular Biological Mechanisms.Lindley Darden - 2006 - Biological Theory 1 (3):280-287.
    In 1958, Francis Crick distinguished the flow of information from the flow of matter and the flow of energy in the mechanism of protein synthesis. Crick’s claims about information flow and coding in molecular biology are viewed from the perspective of a new characterization of mechanisms and from the perspective of information as holding a key to distinguishing work in molecular biology from that of biochemistry in the 1950s–1970s . Flow of matter from beginning to end does not occur in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Information in Biology: A Fictionalist Account.Arnon Levy - 2010 - Noûs 45 (4):640-657.
  • With ‘Genes’ Like That, Who Needs an Environment? Postgenomics’s Argument for the ‘Ontogeny of Information’.Karola Stotz - 2006 - Philosophy of Science 73 (5):905-917.
    The linear sequence specification of a gene product is not provided by the target DNA sequence alone but by the mechanisms of gene expressions. The main actors of these mechanisms, proteins and functional RNAs, relay environmental information to the genome with important consequences to sequence selection and processing. This `postgenomic' reality has implications for our understandings of development not as predetermined by genes but as an epigenetic process. Critics of genetic determinism have long argued that the activity of `genes' and (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  • Genetic information: A metaphor in search of a theory.Paul Edmund Griffiths - 2001 - Philosophy of Science 68 (3):394-412.
    John Maynard Smith has defended against philosophical criticism the view that developmental biology is the study of the expression of information encoded in the genes by natural selection. However, like other naturalistic concepts of information, this ‘teleosemantic’ information applies to many non-genetic factors in development. Maynard Smith also fails to show that developmental biology is concerned with teleosemantic information. Some other ways to support Maynard Smith’s conclusion are considered. It is argued that on any definition of information the view that (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   127 citations  
  • Developmental Systems and Evolutionary Explanation.P. E. Griffiths & R. D. Gray - 1994 - Journal of Philosophy 91 (6):277-304.
  • On the theoretical role of "genetic coding".Peter Godfrey-Smith - 2000 - Philosophy of Science 67 (1):26-44.
    The role played by the concept of genetic coding in biology is discussed. I argue that this concept makes a real contribution to solving a specific problem in cell biology. But attempts to make the idea of genetic coding do theoretical work elsewhere in biology, and in philosophy of biology, are probably mistaken. In particular, the concept of genetic coding should not be used (as it often is) to express a distinction between the traits of whole organisms that are coded (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   82 citations  
  • What Genes Can't Do.Lenny Moss - 2003 - MIT Press.
    A historical and critical analysis of the concept of the gene that attempts to provide new perspectives and metaphors for the transformation of biology and its philosophy.
    Direct download  
     
    Export citation  
     
    Bookmark   130 citations  
  • The Philosophy and history of molecular biology: new perspectives.Sahotra Sarkar (ed.) - 1996 - Boston: Kluwer Academic.
    This book is a collection of papers which reflect the recent trends in the philosophy and history of molecular biology. It brings together historians, philosophers, and molecular biologists who reflect on the discipline's emergence in the 1950's, its explosive growth, and the directions in which it is going. Questions addressed include: (i) what are the limits of molecular biology? (ii) What is the relation of molecular biology to older subdisciplines of biology, especially biochemistry? (iii) Are there theories in molecular biology? (...)
    Direct download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A History of Modern Computing.Paul E. Ceruzzi - 2003 - MIT Press.
    Ceruzzi pens a history of computing from the development of the first electronic digital computer to the Web and dot-com crash.
    Direct download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Philosophy of Experimental Biology.Marcel Weber - 2004 - Cambridge University Press.
    Philosophy of Experimental Biology explores some central philosophical issues concerning scientific research in experimental biology, including genetics, biochemistry, molecular biology, developmental biology, neurobiology, and microbiology. It seeks to make sense of the explanatory strategies, concepts, ways of reasoning, approaches to discovery and problem solving, tools, models and experimental systems deployed by scientific life science researchers and also integrates developments in historical scholarship, in particular the New Experimentalism. It concludes that historical explanations of scientific change that are based on local laboratory (...)
  • Developmental systems and evolutionary explanation.P. E. Griffiths & R. D. Gray - 1994 - Journal of Philosophy 91 (6):277-304.
  • Mechanistic Information and Causal Continuity.Jim Bogen & Peter Machamer - 2010 - In Phyllis McKay Illari, Federica Russo & Jon Williamson (eds.), Causality in the Sciences. Oxford University Press.
    Some biological processes move from step to step in a way that cannot be completely understood solely in terms of causes and correlations. This paper develops a notion of mechanistic information that can be used to explain the continuities of such processes. We compare them to processes that do not involve information. We compare our conception of mechanistic information to some familiar notions including Crick’s idea of genetic information, Shannon-Weaver information, and Millikan’s biosemantic information.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • What Genes Can’t Do.Lenny Moss - 2003 - Journal of the History of Biology 38 (2):383-384.
     
    Export citation  
     
    Bookmark   139 citations  
  • The Central Dogma as a Thesis of Causal Specificity.Marcel Weber - 2006 - History and Philosophy of the Life Sciences 28 (4):595-610.
    I present a reconstruction of F.H.C. Crick's two 1957 hypotheses "Sequence Hypothesis" and "Central Dogma" in terms of a contemporary philosophical theory of causation. Analyzing in particular the experimental evidence that Crick cited, I argue that these hypotheses can be understood as claims about the actual difference-making cause in protein synthesis. As these hypotheses are only true if restricted to certain nucleic acids in certain organisms, I then examine the concept of causal specificity and its potential to counter claims about (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   36 citations