The logic DAI of demodalised analytic implication has been introduced by J.M. Dunn as a variation on a time-honoured logical system by C.I. Lewis’ student W.T. Parry. The main tenet underlying this logic is that no implication can be valid unless its consequent is “analytically contained” in its antecedent. DAI has been investigated both proof-theoretically and model-theoretically, but no study so far has focussed on DAI from the viewpoint of abstract algebraic logic. We provide several different algebraic semantics for DAI, (...) showing their equivalence with the known semantics by Dunn and Epstein. We also show that DAI is algebraisable and we identify its equivalent quasivariety semantics. This class turns out to be a linguistic and axiomatic expansion of involutive bisemilattices, a subquasivariety of which forms the algebraic counterpart of Paraconsistent Weak Kleene logic. This fact sheds further light on the relationship between containment logics and logics of nonsense. (shrink)
We introduce a generalization of MV algebras motivated by the investigations into the structure of quantum logical gates. After laying down the foundations of the structure theory for such quasi-MV algebras, we show that every quasi-MV algebra is embeddable into the direct product of an MV algebra and a “flat” quasi-MV algebra, and prove a completeness result w.r.t. a standard quasi-MV algebra over the complex numbers.
In this article we will focus our attention on the variety of distributive bisemilattices and some linguistic expansions thereof: bounded, De Morgan, and involutive bisemilattices. After extending Balbes’ representation theorem to bounded, De Morgan, and involutive bisemilattices, we make use of Hartonas–Dunn duality and introduce the categories of 2spaces and 2spaces\. The categories of 2spaces and 2spaces\ will play with respect to the categories of distributive bisemilattices and De Morgan bisemilattices, respectively, a role analogous to the category of Stone spaces (...) with respect to the category of Boolean algebras. Actually, the aim of this work is to show that these categories are, in fact, dually equivalent. (shrink)
We investigate certain Brouwer-Zadeh lattices that serve as abstract counterparts of lattices of effects in Hilbert spaces under the spectral ordering. These algebras, called PBZ*-lattices, can also be seen as generalisations of orthomodular lattices and are remarkable for the collapse of three notions of “sharpness” that are distinct in general Brouwer-Zadeh lattices. We investigate the structure theory of PBZ*-lattices and their reducts; in particular, we prove some embedding results for PBZ*-lattices and provide an initial description of the lattice of PBZ*-varieties.
In this paper, we aim at highlighting the significance of the A- and B-properties introduced by Finch. These conditions turn out to capture interesting structural features of lattices of closed subspaces of complete inner vector spaces. Moreover, we generalise them to the context of effect algebras, establishing a novel connection between quantum structures arising from the logico-algebraic approach to quantum mechanics.
We investigate an expansion of quasi-MV algebras ([10]) by a genuine quantum unary operator. The variety of such quasi-MV algebras has a subquasivariety whose members—called cartesian—can be obtained in an appropriate way out of MV algebras. After showing that cartesian . quasi-MV algebras generate ,we prove a standard completeness theorem for w.r.t. an algebra over the complex numbers.
The variety of residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., \-groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated \-groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated \-groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some (...) parts of the theory of join-completions of residuated \-groupoids to the left-residuated case, giving a new proof of MacLaren’s theorem for orthomodular lattices. (shrink)
We investigate some properties of two varieties of algebras arising from quantum computation - quasi-MV algebras and $\sqrt{^{\prime }}$ quasi-MV algebras - first introduced in \cite{Ledda et al. 2006}, \cite{Giuntini et al. 200+} and tightly connected with fuzzy logic. We establish the finite model property and the congruence extension property for both varieties; we characterize the quasi-MV reducts and subreducts of $\sqrt{^{\prime }}$ quasi-MV algebras; we give a representation of semisimple $\sqrt{^{\prime }}$ quasi-MV algebras in terms of algebras of functions; (...) finally, we describe the structure of free algebras with one generator in both varieties. (shrink)
Shi and Aharonov have shown that the Toffoli gate and the Hadamard gate give rise to an approximately universal set of quantum computational gates. We study the basic algebraic properties of this system by introducing the notion of Shi-Aharonov quantum computational structure. We show that the quotient of this structure is isomorphic to a structure based on a particular set of complex numbers $\end{document} and radius \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{2}$\end{document} ).
We introduce a sequent system which is Gentzen algebraisable with orthomodular lattices as equivalent algebraic semantics, and therefore can be viewed as a calculus for orthomodular quantum logic. Its sequents are pairs of non-associative structures, formed via a structural connective whose algebraic interpretation is the Sasaki product on the left-hand side and its De Morgan dual on the right-hand side. It is a substructural calculus, because some of the standard structural sequent rules are restricted—by lifting all such restrictions, one recovers (...) a calculus for classical logic. (shrink)
The characteristic holistic features of the quantum theoretic formalism and the intriguing notion of entanglement can be applied to a field that is far from microphysics: logical semantics. Quantum computational logics are new forms of quantum logic that have been suggested by the theory of quantum logical gates in quantum computation. In the standard semantics of these logics, sentences denote quantum information quantities: systems of qubits (quregisters) or, more generally, mixtures of quregisters (qumixes), while logical connectives are interpreted as special (...) quantum logical gates (which have a characteristic reversible and dynamic behavior). In this framework, states of knowledge may be entangled, in such a way that our information about the whole determines our information about the parts; and the procedure cannot be, generally, inverted. In spite of its appealing properties, the standard version of the quantum computational semantics is strongly “Hilbert-space dependent”. This certainly represents a shortcoming for all applications, where real and complex numbers do not generally play any significant role (as happens, for instance, in the case of natural and of artistic languages). We propose an abstract version of quantum computational semantics, where abstract qumixes, quregisters and registers are identified with some special objects (not necessarily living in a Hilbert space), while gates are reversible functions that transform qumixes into qumixes. In this framework, one can give an abstract definition of the notions of superposition and of entangled pieces of information, quite independently of any numerical values. We investigate three different forms of abstract holistic quantum computational logic. (shrink)
In the present paper we continue the investigation of the lattice of subvarieties of the variety of ${\sqrt{\prime}}$ quasi-MV algebras, already started in [6]. Beside some general results on the structure of such a lattice, the main contribution of this work is the solution of a long-standing open problem concerning these algebras: namely, we show that the variety generated by the standard disk algebra D r is not finitely based, and we provide an infinite equational basis for the same variety.
Shi and Aharonov have shown that the Toffoli gate and the Hadamard gate give rise to an approximately universal set of quantum computational gates. The basic algebraic properties of this system have been studied in Dalla Chiara et al. (Foundations of Physics 39(6):559–572, 2009), where we have introduced the notion of Shi-Aharonov quantum computational structure. In this paper we propose an algebraic abstraction from the Hilbert-space quantum computational structures, by introducing the notion of Toffoli-Hadamard algebra. From an intuitive point of (...) view, such abstract algebras represent a natural quantum generalization of both classical and fuzzy-like structures. (shrink)
This volume presents the state of the art in the algebraic investigation into substructural logics. It features papers from the workshop AsubL (Algebra & Substructural Logics - Take 6). Held at the University of Cagliari, Italy, this event is part of the framework of the Horizon 2020 Project SYSMICS: SYntax meets Semantics: Methods, Interactions, and Connections in Substructural logics. -/- Substructural logics are usually formulated as Gentzen systems that lack one or more structural rules. They have been intensively studied over (...) the past two decades by logicians of various persuasions. These researchers include mathematicians, philosophers, linguists, and computer scientists. Substructural logics are applicable to the mathematical investigation of such processes as resource-conscious reasoning, approximate reasoning, type-theoretical grammar, and other focal notions in computer science. They also apply to epistemology, economics, and linguistics. The recourse to algebraic methods -- or, better, the fecund interplay of algebra and proof theory -- has proved useful in providing a unifying framework for these investigations. The AsubL series of conferences, in particular, has played an important role in these developments. -/- This collection will appeal to students and researchers with an interest in substructural logics, abstract algebraic logic, residuated lattices, proof theory, universal algebra, and logical semantics. (shrink)
In the present paper we continue the investigation of the lattice of subvarieties of the variety of √′ P quasi-MV algebras, already started in [6]. Beside some general results on the structure of such a lattice, the main contribution of this work is the solution of a long-standing open problem concerning these algebras: namely, we show that the variety generated by the standard disk algebra D r is not finitely based, and we provide an infinite equational basis for the same (...) variety. (shrink)
Quasi-MV algebras are generalisations of MV algebras arising in quantum computational logic. Although a reasonably complete description of the lattice of subvarieties of quasi-MV algebras has already been provided, the problem of extending this description to the setting of quasivarieties has so far remained open. Given its apparent logical repercussions, we tackle the issue in the present paper. We especially focus on quasivarieties whose generators either are subalgebras of the standard square quasi-MV algebra S , or can be obtained therefrom (...) through the addition of some fixpoints for the inverse. (shrink)
We introduce Boolean-like algebras of dimension n having n constants $${{{\mathsf {e}}}}_1,\ldots,{{{\mathsf {e}}}}_n$$ e 1, …, e n, and an $$$$ -ary operation q that induces a decomposition of the algebra into n factors through the so-called n-central elements. Varieties of $$n{\mathrm {BA}}$$ n BA s share many remarkable properties with the variety of Boolean algebras and with primal varieties. The $$n{\mathrm {BA}}$$ n BA s provide the algebraic framework for generalising the classical propositional calculus to the case of n–perfectly (...) symmetric–truth-values. Every finite-valued tabular logic can be embedded into such a n-valued propositional logic, $$n{\mathrm {CL}}$$ n CL, and this embedding preserves validity. We define a confluent and terminating first-order rewriting system for deciding validity in $$n{\mathrm {CL}}$$ n CL, and, via the embeddings, in all the finite tabular logics. (shrink)
In this note we present a completion for the variety of bounded distributive quasi lattices, and, inspired by a well-known idea of L.L. Maksimova [14], we apply this result in proving the amalgamation property for such a class of algebras.
Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by quantum structures arising from the logico-algebraic approach to quantum mechanics. The aim of the present work is starting a systematic inquiry into paraorthomodular posets theory both from algebraic and order-theoretic perspectives. On the one hand, we show that paraorthomodular posets are amenable of an algebraic treatment by means of a smooth representation in terms of bounded directoids with antitone involution. On the other, we investigate their order-theoretical features (...) in terms of forbidden configurations. Moreover, sufficient and necessary conditions characterizing bounded posets with an antitone involution whose Dedekind–MacNeille completion is paraorthomodular are provided. (shrink)