We introduce translations between display calculus proofs and labeled calculus proofs in the context of tense logics. First, we show that every derivation in the display calculus for the minimal tense logic Kt extended with general path axioms can be effectively transformed into a derivation in the corresponding labeled calculus. Concerning the converse translation, we show that for Kt extended with path axioms, every derivation in the corresponding labeled calculus can be put into a special form that is translatable to (...) a derivation in the associated display calculus. A key insight in this converse translation is a canonical representation of display sequents as labeled polytrees. Labeled polytrees, which represent equivalence classes of display sequents modulo display postulates, also shed light on related correspondence results for tense logics. (shrink)
We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt.
This paper presents an overview of the methods of hypersequents and display sequents in the proof theory of non-classical logics. In contrast with existing surveys dedicated to hypersequent calculi or to display calculi, our aim is to provide a unified perspective on these two formalisms highlighting their differences and similarities and discussing applications and recent results connecting and comparing them.
The Mīmā ṃ sā school of Indian philosophy elaborated complex ways of interpreting the prescriptive portions of the Vedic sacred texts. The present article is the result of the collaboration of a group of scholars of logic, computer science, European philosophy and Indian philosophy and aims at the individuation and analysis of the deontic system which is applied but never explicitly discussed in Mīmā ṃ sā texts. The article outlines the basic distinction between three sorts of principles —hermeneutic, linguistic and (...) deontic. It proposes a mathematical formalization of the deontic principles and uses it to discuss a well-known example of seemingly conflicting statements, namely the prescription to undertake the malefic Śyena sacrifice and the prohibition to perform any harm. (shrink)
We introduce necessary and sufficient conditions for a (single-conclusion) sequent calculus to admit (reductive) cut-elimination. Our conditions are formulated both syntactically and semantically.
In this paper we deepen Mundici's analysis on reducibility of the decision problem from infinite-valued ukasiewicz logic to a suitable m-valued ukasiewicz logic m , where m only depends on the length of the formulas to be proved. Using geometrical arguments we find a better upper bound for the least integer m such that a formula is valid in if and only if it is also valid in m. We also reduce the notion of logical consequence in to the same (...) notion in a suitable finite set of finite-valued ukasiewicz logics. Finally, we define an analytic and internal sequent calculus for infinite-valued ukasiewicz logic. (shrink)
It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics.
We perform a proof-theoretical investigation of two modal predicate logics: global intuitionistic logic GI and global intuitionistic fuzzy logic GIF. These logics were introduced by Takeuti and Titani to formulate an intuitionistic set theory and an intuitionistic fuzzy set theory together with their metatheories. Here we define analytic Gentzen style calculi for GI and GIF. Among other things, these calculi allows one to prove Herbrand’s theorem for suitable fragments of GI and GIF.
A sequent calculus with the subformula property has long been recognised as a highly favourable starting point for the proof theoretic investigation of a logic. However, most logics of interest cannot be presented using a sequent calculus with the subformula property. In response, many formalisms more intricate than the sequent calculus have been formulated. In this work we identify an alternative: retain the sequent calculus but generalise the subformula property to permit specific axiom substitutions and their subformulas. Our investigation leads (...) to a classification of generalised subformula properties and is applied to infinitely many substructural, intermediate, and modal logics. We also develop a complementary perspective on the generalised subformula properties in terms of logical embeddings. This yields new complexity upper bounds for contractive-mingle substructural logics and situates isolated results on the so-called simple substitution property within a general theory. (shrink)
Over the course of more than two millennia the philosophical school of Mīmāṃsā has thoroughly analyzed normative statements. In this paper we approach a formalization of the deontic system which is applied but never explicitly discussed in Mīmāṃsā to resolve conflicts between deontic statements by giving preference to the more specific ones. We first extend with prohibitions and recommendations the non-normal deontic logic extracted in Ciabattoni et al. from Mīmāṃsā texts, obtaining a multimodal dyadic version of the deontic logic \. (...) Sequent calculus is then used to close a set of prima-facie injunctions under a restricted form of monotonicity, using specificity to avoid conflicts. We establish decidability and complexity results, and investigate the potential use of the resulting system for Mīmāṃsā philosophy and, more generally, for the formal interpretation of normative statements. (shrink)
A Partial Combinatory Algebra is completable if it can be extended to a total one. In [1] it is asked (question 11, posed by D. Scott, H. Barendregt, and G. Mitschke) if every PCA can be completed. A negative answer to this question was given by Klop in [12, 11]; moreover he provided a sufficient condition for completability of a PCA (M, ·, K, S) in the form of ten axioms (inequalities) on terms of M. We prove that just one (...) of these axiom (the so called Barendregt's axiom) is sufficient to guarantee (a slightly weaker notion of) completability. (shrink)