12 found
Order:
  1.  27
    Numeration Models of Λ-Calculus.Akira Kanda - 1985 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 31 (14-18):209-220.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  2.  24
    Classes of Numeration Models of Λ-Calculus.Akira Kanda - 1986 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 32 (19-24):315-322.
    Direct download  
     
    Export citation  
     
    Bookmark  
  3.  22
    Acceptable Numerations of Function Spaces.Akira Kanda - 1985 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 31 (31-34):503-508.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  4.  21
    Recursion Theorems and Effective Domains.Akira Kanda - 1988 - Annals of Pure and Applied Logic 38 (3):289-300.
    Every acceptable numbering of an effective domain is complete. Hence every effective domain admits the 2nd recursion theorem of Eršov[1]. On the other hand for every effective domain, the 1st recursion theorem holds. In this note, we establish that for effective domains, the 2nd recursion theorem is strictly more general than the 1st recursion theorem, a generalization of an important result in recursive function theory.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  5.  20
    Numeration Models of Λβ-Calculus.Akira Kanda - 1986 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 32 (25-30):409-414.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  6.  19
    Productive Sets and Constructively Nonpartial-Recursive Functions.Akira Kanda - 1988 - Archive for Mathematical Logic 27 (1):49-50.
  7.  17
    Acceptable Numerations of Morphisms and Myhill‐Shepherdson Property.Akira Kanda - 1995 - Mathematical Logic Quarterly 41 (1):39-48.
    Myhill-Shepherdson property in recursive function theory states that extensional effective program transformations determine continuous operations on partial functions. Case showed that this property fails to characterize acceptability of numberings of partial recursive functions. In this note we present a higher type analogue to Myhill-Shepherdson property. Our purpose is to show that higher type Myhill-Shepherdson property characterizes weak acceptability under a natural condition.
    Direct download  
     
    Export citation  
     
    Bookmark  
  8.  17
    Numeration Models of Λ‐Calculus.Akira Kanda - 1985 - Mathematical Logic Quarterly 31 (14‐18):209-220.
    Direct download  
     
    Export citation  
     
    Bookmark  
  9.  16
    Classes of Numeration Models of Λ‐Calculus.Akira Kanda - 1986 - Mathematical Logic Quarterly 32 (19‐24):315-322.
    Direct download  
     
    Export citation  
     
    Bookmark  
  10.  8
    Retracts of Numerations.Akira Kanda - 1989 - Annals of Pure and Applied Logic 42 (3):225-242.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  11.  19
    Numeration Models of Λβ‐Calculus.Akira Kanda - 1986 - Mathematical Logic Quarterly 32 (25‐30):409-414.
  12.  13
    Acceptable Numerations of Function Spaces.Akira Kanda - 1985 - Mathematical Logic Quarterly 31 (31‐34):503-508.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation