There are close similarities between the Weihrauch lattice and the zoo of axiom systems in reverse mathematics. Following these similarities has often allowed researchers to translate results from one setting to the other. However, amongst the big five axiom systems from reverse mathematics, so far $\mathrm {ATR}_0$ has no identified counterpart in the Weihrauch degrees. We explore and evaluate several candidates, and conclude that the situation is complicated.
We determine the computational complexity of the Hahn-Banach Extension Theorem. To do so, we investigate some basic connections between reverse mathematics and computable analysis. In particular, we use Weak König's Lemma within the framework of computable analysis to classify incomputable functions of low complexity. By defining the multivalued function Sep and a natural notion of reducibility for multivalued functions, we obtain a computational counterpart of the subsystem of second-order arithmetic WKL0. We study analogies and differences between WKL0 and the class (...) of Sep-computable multivalued functions. Extending work of Brattka, we show that a natural multivalued function associated with the Hahn-Banach Extension Theorem is Sep-complete. (shrink)
We show that the maximal linear extension theorem for well partial orders is equivalent over RCA 0 to ATR 0. Analogously, the maximal chain theorem for well partial orders is equivalent to ATR 0 over RCA 0.
We study the computability-theoretic complexity and proof-theoretic strength of the following statements: (1) "If X is a well-ordering, then so is ε X ", and (2) "If X is a well-ordering, then so is φ(α, X)", where α is a fixed computable ordinal and φ represents the two-placed Veblen function. For the former statement, we show that ω iterations of the Turing jump are necessary in the proof and that the statement is equivalent to ${\mathrm{A}\mathrm{C}\mathrm{A}}_{0}^{+}$ over RCA₀. To prove the (...) latter statement we need to use ω α iterations of the Turing jump, and we show that the statement is equivalent to ${\mathrm{\Pi }}_{{\mathrm{\omega }}^{\mathrm{\alpha }}}^{0}{-\mathrm{C}\mathrm{A}}_{0}$ . Our proofs are purely computability-theoretic. We also give a new proof of a result of Friedman: the statement "if x is a well-ordering, then so is φ(x, 0)" is equivalent to ATR₀ over RCA₀. (shrink)
We prove that the maximal order type of the wqo of linear orders of finite Hausdorff rank under embeddability is φ2, the first fixed point of the ε-function. We then show that Fraïssé’s conjecture restricted to linear orders of finite Hausdorff rank is provable in +“φ2 is well-ordered” and, over , implies +“φ2 is well-ordered”.
When a linear order has an order preserving surjection onto each of its suborders, we say that it is strongly surjective. We prove that the set of countable strongly surjective linear orders is a [Formula: see text]-complete set. Using hypotheses beyond ZFC, we prove the existence of uncountable strongly surjective orders.
We study Lebesgue and Atsuji spaces within subsystems of second order arithmetic. The former spaces are those such that every open covering has a Lebesgue number, while the latter are those such that every continuous function defined on them is uniformly continuous. The main results we obtain are the following: the statement “every compact space is Lebesgue” is equivalent to $\hbox{\sf WKL}_0$ ; the statements “every perfect Lebesgue space is compact” and “every perfect Atsuji space is compact” are equivalent to (...) $\hbox{\sf ACA}_0$ ; the statement “every Lebesgue space is Atsuji” is provable in $\hbox{\sf RCA}_0$ ; the statement “every Atsuji space is Lebesgue” is provable in $\hbox{\sf ACA}_0$ . We also prove that the statement “the distance from a closed set is a continuous function” is equivalent to $\Pi^1_1\hbox{-\sf CA}_0$. (shrink)
We introduce the notion of τ-like partial order, where τ is one of the linear order types ω, ω*, ω + ω*, and ζ. For example, being ω-like means that every element has finitely many predecessors, while being ζ-like means that every interval is finite. We consider statements of the form “any τ-like partial order has a τ-like linear extension” and “any τ-like partial order is embeddable into τ” . Working in the framework of reverse mathematics, we show that these (...) statements are equivalent either to equation image or to equation image over the usual base system equation image. (shrink)
We show that the quasi-order of continuous embeddability between finitely branching dendrites (a natural class of fairly simple compacta) is $\Sigma_1^1$ -complete. We also show that embeddability between countable linear orders with infinitely many colors is $\Sigma_1^1$ -complete.
In this paper we study the reverse mathematics of two theorems by Bonnet about partial orders. These results concern the structure and cardinality of the collection of initial intervals. The first theorem states that a partial order has no infinite antichains if and only if its initial intervals are finite unions of ideals. The second one asserts that a countable partial order is scattered and does not contain infinite antichains if and only if it has countably many initial intervals. We (...) show that the left to right directions of these theorems are equivalent to ACA0 and ATR0, respectively. On the other hand, the opposite directions are both provable in WKL0, but not in RCA0. We also prove the equivalence with ACA0 of the following result of Erdös and Tarski: a partial order with no infinite strong antichains has no arbitrarily large finite strong antichains. (shrink)
We study the provability in subsystems of second-order arithmetic of two theorems of Harrington and Shelah [6] about Borel quasi-orderings of the reals. These theorems turn out to be provable in ATR0, thus giving further evidence to the observation that ATR0 is the minimal subsystem of second-order arithmetic in which significant portion of descriptive set theory can be developed. As in [6] considering the lightface versions of the theorems will be instrumental in their proof and the main techniques employed will (...) be the reflection principles and Gandy forcing. (shrink)
In this paper we give a proof of the II12-completeness of the set of countable better quasi orderings . This result was conjectured by Clote in [2] and proved by the author in his Ph.d. thesis [6] . Here we prove it using Simpson's definition of better quasi ordering and as little bqo theory as possible.
We study Polish spaces for which a set of possible distances $A \subseteq R^+$ is fixed in advance. We determine, depending on the properties of A, the complexity of the collection of all Polish metric spaces with distances in A, obtaining also example of sets in some Wadge classes where not many natural examples are known. Moreover we describe the properties that A must have in order that all Polish spaces with distances in that set belong to a given class, (...) such as zero-dimensional, locally compact, etc. These results lead us to give a fairly complete description of the complexity, with respect to Borel reducibility and again depending on the properties of A, of the relations of isometry and isometric embeddability between these Polish spaces. (shrink)
In (Fund Math 60:175–186 1967), Wolk proved that every well partial order (wpo) has a maximal chain; that is a chain of maximal order type. (Note that all chains in a wpo are well-ordered.) We prove that such maximal chain cannot be found computably, not even hyperarithmetically: No hyperarithmetic set can compute maximal chains in all computable wpos. However, we prove that almost every set, in the sense of category, can compute maximal chains in all computable wpos. Wolk’s original result (...) actually shows that every wpo has a strongly maximal chain, which we define below. We show that a set computes strongly maximal chains in all computable wpo if and only if it computes all hyperarithmetic sets. (shrink)
Let ⪯R be the preorder of embeddability between countable linear orders colored with elements of Rado's partial order . We show that ⪯R has fairly high complexity with respect to Borel reducibility , although its exact classification remains open.
A quasi-order Q induces two natural quasi-orders on P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}}$$\end{document}, but if Q is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq, pp. 453–462, 2007) showed that moving from a well-quasi-order Q to the quasi-orders on P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}}$$\end{document} preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that the upper topologies of the induced quasi-orders on P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...) \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}}$$\end{document} are Noetherian, which means that they contain no infinite strictly descending sequences of closed sets. We analyze various theorems of the form “if Q is a well-quasi-order then a certain topology on P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}}$$\end{document} is Noetherian” in the style of reverse mathematics, proving that these theorems are equivalent to ACA0 over RCA0. To state these theorems in RCA0 we introduce a new framework for dealing with second-countable topological spaces. (shrink)
We investigate the uniform computational content of the open and clopen Ramsey theorems in the Weihrauch lattice. While they are known to be equivalent to $\mathrm {ATR_0}$ from the point of view of reverse mathematics, there is not a canonical way to phrase them as multivalued functions. We identify eight different multivalued functions and study their degree from the point of view of Weihrauch, strong Weihrauch, and arithmetic Weihrauch reducibility. In particular one of our functions turns out to be strictly (...) stronger than any previously studied multivalued functions arising from statements around $\mathrm {ATR}_0$. (shrink)
We study the reverse mathematics of interval orders. We establish the logical strength of the implications among various definitions of the notion of interval order. We also consider the strength of different versions of the characterization theorem for interval orders: a partial order is an interval order if and only if it does not contain 2 \oplus 2. We also study proper interval orders and their characterization theorem: a partial order is a proper interval order if and only if it (...) contains neither 2 \oplus 2 nor 3 \oplus 1. (shrink)