Results for 'Allbrooke Bmm'

5 found
Order:
  1.  9
    Bounded Martin’s Maximum with an Asterisk.David Asperó & Ralf Schindler - 2014 - Notre Dame Journal of Formal Logic 55 (3):333-348.
    We isolate natural strengthenings of Bounded Martin’s Maximum which we call ${\mathsf{BMM}}^{*}$ and $A-{\mathsf{BMM}}^{*,++}$, and we investigate their consequences. We also show that if $A-{\mathsf{BMM}}^{*,++}$ holds true for every set of reals $A$ in $L$, then Woodin’s axiom $$ holds true. We conjecture that ${\mathsf{MM}}^{++}$ implies $A-{\mathsf{BMM}}^{*,++}$ for every $A$ which is universally Baire.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  14
    Martin’s maximum revisited.Matteo Viale - 2016 - Archive for Mathematical Logic 55 (1-2):295-317.
    We present several results relating the general theory of the stationary tower forcing developed by Woodin with forcing axioms. In particular we show that, in combination with class many Woodin cardinals, the forcing axiom MM++ makes the Π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_2}$$\end{document}-fragment of the theory of Hℵ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{\aleph_2}}$$\end{document} invariant with respect to stationary set preserving forcings that preserve BMM. We argue that this is a promising generalization to (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3.  26
    Semi-proper forcing, remarkable cardinals, and Bounded Martin's Maximum.Ralf Schindler - 2004 - Mathematical Logic Quarterly 50 (6):527-532.
    We show that L absoluteness for semi-proper forcings is equiconsistent with the existence of a remarkable cardinal, and hence by [6] with L absoluteness for proper forcings. By [7], L absoluteness for stationary set preserving forcings gives an inner model with a strong cardinal. By [3], the Bounded Semi-Proper Forcing Axiom is equiconsistent with the Bounded Proper Forcing Axiom , which in turn is equiconsistent with a reflecting cardinal. We show that Bounded Martin's Maximum is much stronger than BSPFA in (...)
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  4.  11
    On a convenient property about $${[\gamma]^{\aleph_0}}$$.David Asperó - 2009 - Archive for Mathematical Logic 48 (7):653-677.
    Several situations are presented in which there is an ordinal γ such that ${\{ X \in [\gamma]^{\aleph_0} : X \cap \omega_1 \in S\,{\rm and}\, ot(X) \in T \}}$ is a stationary subset of ${[\gamma]^{\aleph_0}}$ for all stationary ${S, T\subseteq \omega_1}$ . A natural strengthening of the existence of an ordinal γ for which the above conclusion holds lies, in terms of consistency strength, between the existence of the sharp of ${H_{\omega_2}}$ and the existence of sharps for all reals. Also, an (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  1
    On a convenient property about [FORMULA].David Asperó - 2009 - Archive for Mathematical Logic 48 (7):653-677.
    Several situations are presented in which there is an ordinal γ such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{ X \in [\gamma]^{\aleph_0} : X \cap \omega_1 \in S\,{\rm and}\, ot \in T \}}$$\end{document} is a stationary subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\gamma]^{\aleph_0}}$$\end{document} for all stationary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S, T\subseteq \omega_1}$$\end{document}. A natural strengthening of the existence of an ordinal γ for which the above (...)
    Direct download  
     
    Export citation  
     
    Bookmark