19 found
Order:
  1. Closures in ℵ0-Categorical Bilinear Maps.Andreas Baudisch - 2000 - Journal of Symbolic Logic 65 (2):914 - 922.
    It is possible to define a combinatorial closure on alternating bilinear maps with few relations similar to that in [2]. For the ℵ 0 - categorical case we show that this closure is part of the algebraic closure.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  2.  13
    A Free Pseudospace.Andreas Baudisch & Anand Pillay - 2000 - Journal of Symbolic Logic 65 (1):443-460.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  3. Magidor-Malitz Quantifiers in Modules.Andreas Baudisch - 1984 - Journal of Symbolic Logic 49 (1):1-8.
    We prove the elimination of Magidor-Malitz quantifiers for R-modules relative to certain Q 2 α -core sentences and positive primitive formulas. For complete extensions of the elementary theory of R-modules it follows that all Ramsey quantifiers (ℵ 0 -interpretation) are eliminable. By a result of Baldwin and Kueker [1] this implies that there is no R-module having the finite cover property.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  11
    Decidability and Stability of Free Nilpotent Lie Algebras and Free Nilpotent P-Groups of Finite Exponent.Andreas Baudisch - 1982 - Annals of Mathematical Logic 23 (1):1-25.
  5.  19
    Fusion Over a Vector Space.Andreas Baudisch, Amador Martin-Pizarro & Martin Ziegler - 2006 - Journal of Mathematical Logic 6 (2):141-162.
    Let T1 and T2 be two countable strongly minimal theories with the DMP whose common theory is the theory of vector spaces over a fixed finite field. We show that T1 ∪ T2 has a strongly minimal completion.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  20
    Decidability and Generalized Quantifiers.Andreas Baudisch (ed.) - 1980 - Akademie Verlag.
  7.  6
    Mekler's Construction Preserves CM-Triviality.Andreas Baudisch - 2002 - Annals of Pure and Applied Logic 115 (1-3):115-173.
    For every structure M of finite signature Mekler 781) has constructed a group G such that for every κ the maximal number of n -types over an elementary equivalent model of cardinality κ is the same for M and G . These groups are nilpotent of class 2 and of exponent p , where p is a fixed prime greater than 2. We consider stable structures M only and show that M is CM -trivial if and only if G is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  9
    Classification and Interpretation.Andreas Baudisch - 1989 - Journal of Symbolic Logic 54 (1):138-159.
    Let S and T be countable complete theories. We assume that T is superstable without the dimensional order property, and S is interpretable in T in such a way that every model of S is coded in a model of T. We show that S does not have the dimensional order property, and we discuss the question of whether $\operatorname{Depth}(S) \leq \operatorname{Depth}(T)$ . For Mekler's uniform interpretation of arbitrary theories S of finite similarity type into suitable theories T s of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  18
    The Theory of Abelian Groups With the Quantifier.Andreas Baudisch - 1977 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 23 (27-30):447-462.
  10.  22
    Formulas ofL Where Aa is Not in The Scope of “¬”.Andreas Baudisch - 1981 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 27 (16-17):249-254.
  11.  10
    A Construction of Superstable NDOP-NOTOP Groups.Andreas Baudisch - 1991 - Journal of Symbolic Logic 56 (4):1385-1390.
    The paper continues [1]. Let S be a complete theory of ultraflat (e.g. planar) graphs as introduced in [4]. We show a strong form of NOTOP for S: The union of two models M1 and M2, independent over a common elementary submodel M0, is the primary model over M1 ∪ M2 of S. Then by results of [1] Mekler's construction [6] gives for such a theory S of nice ultraflat graphs a superstable 2-step-nilpotent group of exponent $p (>2)$ with NDOP (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  8
    The Theory of Abelian Groups With the Quantifier (≦ X).Andreas Baudisch - 1976 - Mathematical Logic Quarterly 23 (27‐30):447-462.
  13.  5
    On Elementary Properties of Free Lie Algebras.Andreas Baudisch - 1986 - Annals of Pure and Applied Logic 30 (2):121-136.
    The elementary theory of a nontrivial free Lie algebra over a commutative integral domain is unstable and has the strict order property.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  28
    On Two Hierarchies of Dimensions.Andreas Baudisch - 1987 - Journal of Symbolic Logic 52 (4):959-968.
    Let T be a countable, complete, ω-stable, nonmultidimensional theory. By Lascar [7], in T eq there is in every dimension of T a type with Lascar rank ω α for some α. We give sufficient conditions for α to coincide with the level of that dimension in Pillay's [10] RK-hierarchy of dimensions computed in T eq . In particular, this is fulfilled for modules.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  15.  11
    Neostability-Properties of Fraïssé Limits of 2-Nilpotent Groups of Exponent $${P > 2}$$ P > 2.Andreas Baudisch - 2016 - Archive for Mathematical Logic 55 (3-4):397-403.
    Let L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}$$\end{document} be the language of group theory with n additional new constant symbols c1,…,cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_1,\ldots,c_n}$$\end{document}. In L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}$$\end{document} we consider the class K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{K}}}$$\end{document} of all finite groups G of exponent p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p > 2}$$\end{document}, where G′⊆⟨c1G,…,cnG⟩⊆Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  23
    The Additive Collapse.Andreas Baudisch - 2009 - Journal of Mathematical Logic 9 (2):241-284.
    Summary. From known examples of theories T obtained by Hrushovski-constructions and of infinite Morley rank, properties are extracted, that allow the collapse to a finite rank substructure. The results are used to give a more model-theoretic proof of the existence of the new uncountably categorical groups in [3].
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17.  11
    Die Elementare Theorie der Gruppe vom Typ p∞ mit Untergruppen.Andreas Baudisch - 1975 - Mathematical Logic Quarterly 21 (1):347-352.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  18.  11
    Formulas of L(Aa) Where Aa is Not in The Scope of “¬”.Andreas Baudisch - 1981 - Mathematical Logic Quarterly 27 (16‐17):249-254.
  19.  2
    Another Stable Group.Andreas Baudisch - 1996 - Annals of Pure and Applied Logic 80 (2):109-138.
    In a recent communication an uncountably categorical group has been constructed that has a non-locally-modular geometry and does not allow the interpretation of a field. We consider a system Δ of elementary axioms fulfilled by some special subgroups of the above group. We show that Δ is complete and stable, but not superstable. It is not even a R-group in the sense discussed by Wagner.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark