We give a definition, in the ring language, of Zp inside Qp and of Fp[[t]] inside Fp), which works uniformly for all p and all finite field extensions of these fields, and in many other Henselian valued fields as well. The formula can be taken existential-universal in the ring language, and in fact existential in a modification of the language of Macintyre. Furthermore, we show the negative result that in the language of rings there does not exist a uniform definition (...) by an existential formula and neither by a universal formula for the valuation rings of all the finite extensions of a given Henselian valued field. We also show that there is no existential formula of the ring language defining Zp inside Qp uniformly for all p. For any fixed finite extension of Qp, we give an existential formula and a universal formula in the ring language which define the valuation ring. (shrink)
It is shown that the theory of fields with an automorphism has a decidable model companion. Quantifier-elimination is established in a natural language. The theory is intimately connected to Ax's theory of pseudofinite fields, and analogues are obtained for most of Ax's classical results. Some indication is given of the connection to nonstandard Frobenius maps.
We extend the field of Laurent series over the reals in a canonical way to an ordered differential field of “logarithmic-exponential series” , which is equipped with a well behaved exponentiation. We show that the LE-series with derivative 0 are exactly the real constants, and we invert operators to show that each LE-series has a formal integral. We give evidence for the conjecture that the field of LE-series is a universal domain for ordered differential algebra in Hardy fields. We define (...) composition of LE-series and establish its basic properties, including the existence of compositional inverses. Various interesting subfields of the field of LE-series are also considered. (shrink)
Gauss used quadratic forms in his second proof of quadratic reciprocity. In this paper we begin to develop a theory of binary quadratic forms over weak fragments of Peano Arithmetic, with a view to reproducing Gauss’ proof in this setting.
Gauss used quadratic forms in his second proof of quadratic reciprocity. In this paper we begin to develop a theory of binary quadratic forms over weak fragments of Peano Arithmetic, with a view to reproducing Gauss’ proof in this setting.
We give foundational results for the model theory of AfinK, the ring of finite adeles over a number field, construed as a restricted product of local fields. In contrast to Weispfenning we work in the language of ring theory, and various sortings interpretable therein. In particular we give a systematic treatment of the product valuation and the valuation monoid. Deeper results are given for the adelic version of Krasner's hyperfields, relating them to the Basarab–Kuhlmann formalism.
Let n be a positive integer and FAℓ be the free abelian lattice-ordered group on n generators. We prove that FAℓ and FAℓ do not satisfy the same first-order sentences in the language if m≠n. We also show that is decidable iff n{1,2}. Finally, we apply a similar analysis and get analogous results for the free finitely generated vector lattices.
A nontrivial ring with unit eliminates imaginaries just in case its complete theory has the following property: every definable m-ary equivalence relation E may be defined by a formula f = f, where f is an m-ary definable function. We show that for certain natural expansions of the field of p-adic numbers, elimination of imaginaries fails or is independent of ZPC. Similar results hold for certain fields of formal power series.