10 found
Order:
  1. Degrees of orders on torsion-free Abelian groups.Asher M. Kach, Karen Lange & Reed Solomon - 2013 - Annals of Pure and Applied Logic 164 (7-8):822-836.
    We show that if H is an effectively completely decomposable computable torsion-free abelian group, then there is a computable copy G of H such that G has computable orders but not orders of every degree.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  75
    Jump degrees of torsion-free abelian groups.Brooke M. Andersen, Asher M. Kach, Alexander G. Melnikov & Reed Solomon - 2012 - Journal of Symbolic Logic 77 (4):1067-1100.
    We show, for each computable ordinal α and degree $\alpha > {0^{\left( \alpha \right)}}$, the existence of a torsion-free abelian group with proper α th jump degree α.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  53
    Limitwise monotonic functions, sets, and degrees on computable domains.Asher M. Kach & Daniel Turetsky - 2010 - Journal of Symbolic Logic 75 (1):131-154.
    We extend the notion of limitwise monotonic functions to include arbitrary computable domains. We then study which sets and degrees are support increasing limitwise monotonic on various computable domains. As applications, we provide a characterization of the sets S with computable increasing η-representations using support increasing limitwise monotonic sets on ℚ and note relationships between the class of order-computable sets and the class of support increasing limitwise monotonic sets on certain domains.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  76
    Decidability and Computability of Certain Torsion-Free Abelian Groups.Rodney G. Downey, Sergei S. Goncharov, Asher M. Kach, Julia F. Knight, Oleg V. Kudinov, Alexander G. Melnikov & Daniel Turetsky - 2010 - Notre Dame Journal of Formal Logic 51 (1):85-96.
    We study completely decomposable torsion-free abelian groups of the form $\mathcal{G}_S := \oplus_{n \in S} \mathbb{Q}_{p_n}$ for sets $S \subseteq \omega$. We show that $\mathcal{G}_S$has a decidable copy if and only if S is $\Sigma^0_2$and has a computable copy if and only if S is $\Sigma^0_3$.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  63
    Computable shuffle sums of ordinals.Asher M. Kach - 2008 - Archive for Mathematical Logic 47 (3):211-219.
    The main result is that for sets ${S \subseteq \omega + 1}$ , the following are equivalent: The shuffle sum σ(S) is computable.The set S is a limit infimum set, i.e., there is a total computable function g(x, t) such that ${f(x) = \lim inf_t g(x, t)}$ enumerates S.The set S is a limitwise monotonic set relative to 0′, i.e., there is a total 0′-computable function ${\tilde{g}(x, t)}$ satisfying ${\tilde{g}(x, t) \leq \tilde{g}(x, t+1)}$ such that ${{\tilde{f}(x) = \lim_t \tilde{g}(x, t)}}$ (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  61
    Euclidean Functions of Computable Euclidean Domains.Rodney G. Downey & Asher M. Kach - 2011 - Notre Dame Journal of Formal Logic 52 (2):163-172.
    We study the complexity of (finitely-valued and transfinitely-valued) Euclidean functions for computable Euclidean domains. We examine both the complexity of the minimal Euclidean function and any Euclidean function. Additionally, we draw some conclusions about the proof-theoretical strength of minimal Euclidean functions in terms of reverse mathematics.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  28
    Computability and uncountable linear orders I: Computable categoricity.Noam Greenberg, Asher M. Kach, Steffen Lempp & Daniel D. Turetsky - 2015 - Journal of Symbolic Logic 80 (1):116-144.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  37
    Computability and uncountable linear orders II: Degree spectra.Noam Greenberg, Asher M. Kach, Steffen Lempp & Daniel D. Turetsky - 2015 - Journal of Symbolic Logic 80 (1):145-178.
  9.  31
    Embeddings of Computable Structures.Asher M. Kach, Oscar Levin & Reed Solomon - 2010 - Notre Dame Journal of Formal Logic 51 (1):55-68.
    We study what the existence of a classical embedding between computable structures implies about the existence of computable embeddings. In particular, we consider the effect of fixing and varying the computable presentations of the computable structures.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  10.  22
    Undecidability of the theories of classes of structures.Asher M. Kach & Antonio Montalbán - 2014 - Journal of Symbolic Logic 79 (4):1001-1019.