6 found
Order:
  1. Energy Efficiency Prediction using Artificial Neural Network.Ahmed J. Khalil, Alaa M. Barhoom, Bassem S. Abu-Nasser, Musleh M. Musleh & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (9):1-7.
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   26 citations  
  2. Tic-Tac-Toe Learning Using Artificial Neural Networks.Mohaned Abu Dalffa, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (2):9-19.
    Throughout this research, imposing the training of an Artificial Neural Network (ANN) to play tic-tac-toe bored game, by training the ANN to play the tic-tac-toe logic using the set of mathematical combination of the sequences that could be played by the system and using both the Gradient Descent Algorithm explicitly and the Elimination theory rules implicitly. And so on the system should be able to produce imunate amalgamations to solve every state within the game course to make better of results (...)
    Direct download  
     
    Export citation  
     
    Bookmark   26 citations  
  3. Glass Classification Using Artificial Neural Network.Mohmmad Jamal El-Khatib, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (23):25-31.
    As a type of evidence glass can be very useful contact trace material in a wide range of offences including burglaries and robberies, hit-and-run accidents, murders, assaults, ram-raids, criminal damage and thefts of and from motor vehicles. All of that offer the potential for glass fragments to be transferred from anything made of glass which breaks, to whoever or whatever was responsible. Variation in manufacture of glass allows considerable discrimination even with tiny fragments. In this study, we worked glass classification (...)
    Direct download  
     
    Export citation  
     
    Bookmark   28 citations  
  4. Artificial Neural Network for Forecasting Car Mileage per Gallon in the City.Mohsen Afana, Jomana Ahmed, Bayan Harb, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 124:51-59.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Make, Model, Type, Origin, DriveTrain, MSRP, Invoice, EngineSize, Cylinders, Horsepower, MPG_Highway, Weight, Wheelbase, Length. ANN was used in prediction of the number of miles per gallon when the car is driven in the city(MPG_City). The results showed that ANN model was able to predict MPG_City with 97.50 (...)
    Direct download  
     
    Export citation  
     
    Bookmark   28 citations  
  5. Parkinson’s Disease Prediction Using Artificial Neural Network.Ramzi M. Sadek, Salah A. Mohammed, Abdul Rahman K. Abunbehan, Abdul Karim H. Abdul Ghattas, Majed R. Badawi, Mohamed N. Mortaja, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):1-8.
    Parkinson's Disease (PD) is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms generally come on slowly over time. Early in the disease, the most obvious are shaking, rigidity, slowness of movement, and difficulty with walking. Doctors do not know what causes it and finds difficulty in early diagnosing the presence of Parkinson’s disease. An artificial neural network system with back propagation algorithm is presented in this paper for helping doctors in identifying (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Handwritten Signature Verification using Deep Learning. [REVIEW]Eman Alajrami, Belal A. M. Ashqar, Bassem S. Abu-Nasser, Ahmed J. Khalil, Musleh M. Musleh, Alaa M. Barhoom & Samy S. Abu-Naser - manuscript
    Every person has his/her own unique signature that is used mainly for the purposes of personal identification and verification of important documents or legal transactions. There are two kinds of signature verification: static and dynamic. Static(off-line) verification is the process of verifying an electronic or document signature after it has been made, while dynamic(on-line) verification takes place as a person creates his/her signature on a digital tablet or a similar device. Offline signature verification is not efficient and slow for a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   26 citations