In this paper, we study the notions related to tree property 1 , or, equivalently, SOP2. Among others, we supply a type-counting criterion for TP1 and show the equivalence of TP1 and k- TP1. Then we introduce the notions of weak k- TP1 for k≥2, and also supply type-counting criteria for those. We do not know whether weak k- TP1 implies TP1, but at least we prove that each weak k- TP1 implies SOP1. Our generalization of the tree-indiscernibility results in (...) Džamonja and Shelah [5] is crucially used throughout the paper. (shrink)
We give definitions that distinguish between two notions of indiscernibility for a set {aη∣η∈ω>ω}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{a_{\eta} \mid \eta \in ^{\omega>}\omega\}}$$\end{document} that saw original use in Shelah [Classification theory and the number of non-isomorphic models. North-Holland, Amsterdam, 1990], which we name s- and str−indiscernibility. Using these definitions and detailed proofs, we prove s- and str-modeling theorems and give applications of these theorems. In particular, we verify a step in the argument that TP is equivalent (...) to TP1 or TP2 that has not seen explication in the literature. In the Appendix, we exposit the proofs of Shelah [Classification theory and the number of non-isomorphic models. North-Holland, Amsterdam, 1990, App. 2.6, 2.7], expanding on the details. (shrink)
Firstly, in this paper, we prove that the equivalence of simplicity and the symmetry of forking. Secondly, we attempt to recover definability part of stability theory to simplicity theory. In particular, using elimination of hyperimaginaries we prove that for any supersimple T, canonical base of an amalgamation class P is the union of names of ψ-definitions of P, ψ ranging over stationary L-formulas in P. Also, we prove that the same is true with stable formulas for an 1-based theory having (...) elimination of hyperimaginaries. For such a theory, the stable forking property holds, too. (shrink)
We show that in a stable first-order theory, the failure of higher dimensional type amalgamation can always be witnessed by algebraic structures that we call n-ary polygroupoids. This generalizes a result of Hrushovski in [16] that failures of 4-amalgamation are witnessed by definable groupoids. The n-ary polygroupoids are definable in a mild expansion of the language.
§1. Introduction. In this report we wish to describe recent work on a class of first order theories first introduced by Shelah in [32], the simple theories. Major progress was made in the first author's doctoral thesis [17]. We will give a survey of this, as well as further works by the authors and others.The class of simple theories includes stable theories, but also many more, such as the theory of the random graph. Moreover, many of the theories of particular (...) algebraic structures which have been studied recently turn out to be simple. The interest is basically that a large amount of the machinery of stability theory, invented by Shelah, is valid in the broader class of simple theories. Stable theories will be defined formally in the next section. An exhaustive study of them is carried out in [33]. Without trying to read Shelah's mind, we feel comfortable in saying that the importance of stability for Shelah lay partly in the fact that an unstable theory T has 2λ many models in any cardinal λ ≥ ω1 + |T|. (shrink)
Let T be a countable, small simple theory. In this paper, we prove that for such T, the notion of Lascar strong type coincides with the notion of strong type, over an arbitrary set.
We study generalized amalgamation properties in simple theories. We formulate a notion of generalized amalgamation in such a way so that the properties are preserved when we pass from T to Teq or Theq; we provide several equivalent ways of formulating the notion of generalized amalgamation.We define two distinct hierarchies of simple theories characterized by their amalgamation properties; examples are given to show the difference between the hierarchies.
An up-to-date account of the current techniques and results in Simplicity Theory, which has been a focus of research in model theory for the last decade. Suitable for logicians, mathematicians and graduate students working on model theory.
An amalgamation base p in a simple theory is stably definable if its canonical base is interdefinable with the set of canonical parameters for the ϕ-definitions of p as ϕ ranges through all stable formulae. A necessary condition for stably definability is given and used to produce an example of a supersimple theory with stable forking having types that are not stably definable. This answers negatively a question posed in [8]. A criterion for and example of a stably definable amalgamation (...) base whose restriction to the canonical base is not axiomatised by stable formulae are also given. The examples involve generic relations over non CM-trivial stable theories. (shrink)
In this paper we study the relativized Lascar Galois group of a strong type. The group is a quasi-compact connected topological group, and if in addition the underlying theory T is G-compact, then the group is compact. We apply compact group theory to obtain model theoretic results in this note. -/- For example, we use the divisibility of the Lascar group of a strong type to show that, in a simple theory, such types have a certain model theoretic property that (...) we call divisible amalgamation. -/- The main result of this paper is that if c is a finite tuple algebraic over a tuple a, the Lascar group of stp(ac) is abelian, and the underlying theory is G-compact, then the Lascar groups of stp(ac) and of stp(a) are isomorphic. To show this, we prove a purely compact group-theoretic result that any compact connected abelian group is isomorphic to its quotient by every finite subgroup. -/- Several (counter)examples arising in connection with the theoretical development of this note are presented as well. For example, we show that, in the main result above, neither the assumption that the Lascar group of stp(ac) is abelian, nor the assumption of c being finite can be removed. (shrink)
We study the notion of weak canonical bases in an NSOP $_{1}$ theory T with existence. Given $p=\operatorname {tp}$ where $B=\operatorname {acl}$ in ${\mathcal M}^{\operatorname {eq}}\models T^{\operatorname {eq}}$, the weak canonical base of p is the smallest algebraically closed subset of B over which p does not Kim-fork. With this aim we firstly show that the transitive closure $\approx $ of collinearity of an indiscernible sequence is type-definable. Secondly, we prove that given a total $\mathop {\smile \hskip -0.9em ^| \ (...) }^K$ -Morley sequence I in p, the weak canonical base of $\operatorname {tp}$ is $\operatorname {acl}$, if the hyperimaginary $I/\approx $ is eliminable to e, a sequence of imaginaries. We also supply a couple of criteria for when the weak canonical base of p exists. In particular the weak canonical base of p is the intersection of the weak canonical bases of all total $\mathop {\smile \hskip -0.9em ^| \ }^K$ -Morley sequences in p over B. However, while we investigate some examples, we point out that given two weak canonical bases of total $\mathop {\smile \hskip -0.9em ^| \ }^K$ -Morley sequences in p need not be interalgebraic, contrary to the case of simple theories. Lastly we suggest an independence relation relying on weak canonical bases, when T has those. The relation, satisfying transitivity and base monotonicity, might be useful in further studies on NSOP $_1$ theories. (shrink)
In this paper, we continue the construction done in [3], so that under model-4-CA or 4-CA, given a bounded quadrangle C induced from a group configuration, we build a canonical hyperdefinable homogeneous space equivalent to C. When C is principal, we can choose the homogeneous space principal as well.
In this article, we prove that if a countable non-${\aleph _0}$-categorical NSOP1 theory with nonforking existence has finitely many countable models, then there is a finite tuple whose own preweight is ω. This result is an extension of a theorem of the author on any supersimple theory.
This is an expository note on the Lascar group. We also study the Lascar group over hyperimaginaries and make some new observations on the strong types over those. In particular, we show that in a simple theory $\operatorname{Ltp}\equiv\operatorname{stp}$ in real context implies that for hyperimaginary context.
We study Kim-independence over arbitrary sets. Assuming that forking satisfies existence, we establish Kim's lemma for Kim-dividing over arbitrary sets in an NSOP1 theory. We deduce symmetry of Kim-independence and the independence theorem for Lascar strong types.