21 found
Order:
Disambiguations
Charles Steinhorn [20]Charles I. Steinhorn [2]
  1.  2
    Expansions of o-Minimal Structures by Dense Independent Sets.Alfred Dolich, Chris Miller & Charles Steinhorn - 2016 - Annals of Pure and Applied Logic 167 (8):684-706.
  2.  1
    On Variants of o-Minimality.Dugald Macpherson & Charles Steinhorn - 1996 - Annals of Pure and Applied Logic 79 (2):165-209.
  3. Uncountable Real Closed Fields with Pa Integer Parts.David Marker, James H. Schmerl & Charles Steinhorn - 2015 - Journal of Symbolic Logic 80 (2):490-502.
  4.  5
    Pseudofinite Structures and Simplicity.Darío García, Dugald Macpherson & Charles Steinhorn - 2015 - Journal of Mathematical Logic 15 (1):1550002.
  5.  3
    Extensions of Ordered Theories by Generic Predicates.Alfred Dolich, Chris Miller & Charles Steinhorn - 2013 - Journal of Symbolic Logic 78 (2):369-387.
  6.  15
    Definable Types in o-Minimal Theories.David Marker & Charles I. Steinhorn - 1994 - Journal of Symbolic Logic 59 (1):185-198.
  7.  11
    On o-Minimal Expansions of Archimedean Ordered Groups.Michael C. Laskowski & Charles Steinhorn - 1995 - Journal of Symbolic Logic 60 (3):817-831.
    We study o-minimal expansions of Archimedean totally ordered groups. We first prove that any such expansion must be elementarily embeddable via a unique (provided some nonzero element is 0-definable) elementary embedding into a unique o-minimal expansion of the additive ordered group of real numbers R. We then show that a definable function in an o-minimal expansion of R enjoys good differentiability properties and use this to prove that an Archimedean real closed field is definable in any nonsemilinear expansion of R. (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  8.  12
    On Linearly Ordered Structures of Finite Rank.Alf Onshuus & Charles Steinhorn - 2009 - Journal of Mathematical Logic 9 (2):201-239.
  9.  1
    Discrete o-Minimal Structures.Anand Pillay & Charles Steinhorn - 1987 - Annals of Pure and Applied Logic 34 (3):275-289.
  10. Definable Types in $Mathscr{O}$-Minimal Theories.David Marker & Charles I. Steinhorn - 1994 - Journal of Symbolic Logic 59 (1):185-198.
  11.  13
    Extending Partial Orders on o‐Minimal Structures to Definable Total Orders.Dugald Macpherson & Charles Steinhorn - 1997 - Mathematical Logic Quarterly 43 (4):456-464.
    It is shown that if is an o-minimal structure such that is a dense total order and ≾ is a parameter-definable partial order on M, then ≾ has an extension to a definable total order.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  12.  9
    The Nonαxiomαtizαbility of 1.(0^) by Finitely Many Schemata.Saharon Shelah & Charles Steinhorn - 1990 - Notre Dame Journal of Formal Logic 31 (1):1-13.
  13.  5
    A Note on Nonmultidimensional Superstable Theories.Anand Pillay & Charles Steinhorn - 1985 - Journal of Symbolic Logic 50 (4):1020-1024.
  14. On the Nonaxiomatizability of Some Logics by Finitely Many Schemas.Saharon Shelah & Charles Steinhorn - 1986 - Notre Dame Journal of Formal Logic 27 (1):1-11.
  15.  5
    The Boolean Spectrum of an $o$-Minimal Theory.Charles Steinhorn & Carlo Toffalori - 1989 - Notre Dame Journal of Formal Logic 30 (2):197-206.
  16.  9
    On Dedekind Complete o-Minimal Structures.Anand Pillay & Charles Steinhorn - 1987 - Journal of Symbolic Logic 52 (1):156-164.
    For a countable complete o-minimal theory T, we introduce the notion of a sequentially complete model of T. We show that a model M of T is sequentially complete if and only if $\mathscr{M} \prec \mathscr{N}$ for some Dedekind complete model N. We also prove that if T has a Dedekind complete model of power greater than 2 ℵ 0 , then T has Dedekind complete models of arbitrarily large powers. Lastly, we show that a dyadic theory--namely, a theory relative (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  17.  2
    Wilkie A. J., Model Completeness Results for Expansions of the Ordered Field of Real Numbers by Restricted Pfaffian Functions and the Exponential Function, Journal of the American Mathematical Society, Vol. 9 , Pp. 1051–1094. [REVIEW]Charles Steinhorn - 1999 - Journal of Symbolic Logic 64 (2):910-913.
  18.  4
    1995–1996 Annual Meeting of the Association for Symbolic Logic.Tomek Bartoszynski, Harvey Friedman, Geoffrey Hellman, Bakhadyr Khoussainov, Phokion G. Kolaitis, Richard Shore, Charles Steinhorn, Mirna Dzamonja, Itay Neeman & Slawomir Solecki - 1996 - Bulletin of Symbolic Logic 2 (4):448-472.
  19.  5
    The Nonaxiomatizability of $L(Q^2{\Aleph1})$ by Finitely Many Schemata.Saharon Shelah & Charles Steinhorn - 1989 - Notre Dame Journal of Formal Logic 31 (1):1-13.
  20.  2
    Review: A. J. Wilkie, Model Completeness Results for Expansions of the Ordered Field of Real Numbers by Restricted Pfaffian Functions and the Exponential Function. [REVIEW]Charles Steinhorn - 1999 - Journal of Symbolic Logic 64 (2):910-913.
  21. Definably Extending Partial Orders in Totally Ordered Structures.Janak Ramakrishnan & Charles Steinhorn - 2014 - Mathematical Logic Quarterly 60 (3):205-210.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography