Results for 'Classical Quantum correspondence'

987 found
Order:
  1. Essential self-adjointness: implications for determinism and the classicalquantum correspondence.John Earman - 2009 - Synthese 169 (1):27-50.
    It is argued that seemingly “merely technical” issues about the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have interesting implications for foundations problems in classical and quantum physics. For example, pursuing these technical issues reveals a sense in which quantum mechanics can cure some of the forms of indeterminism that crop up in classical mechanics; and at the same time it reveals the possibility of a form of indeterminism in (...) mechanics that is quite distinct from the indeterminism of state vector collapse. More generally, the examples considered indicate that the classicalquantum correspondence is more intricate and delicate than is generally appreciated. The aim of the article is to give a series of examples that reveal why the technical issues about self-adjointness are relevant to the philosophy of science and that help to make the issues accessible to philosophers of science. (shrink)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  2.  15
    From classical to quantum, from physics to philosophy: Benjamin H. Feintzeig: The classical-quantum correspondence. Cambridge Elements in the philosophy of physics. Cambridge: Cambridge University Press, 2022, 97 pp, $22 PB. [REVIEW]Eugene Y. S. Chua - 2023 - Metascience 33 (1):65-68.
  3. Higher Spin AdS.Cft Correspondence & Quantum Gravity Aspects Of Ads/cft - 2016 - In Piero Nicolini, Matthias Kaminski, Jonas Mureika & Marcus Bleicher (eds.), 1st Karl Schwarzschild Meeting on Gravitational Physics. Cham: Imprint: Springer.
    No categories
     
    Export citation  
     
    Bookmark  
  4. Both Classical & Quantum Information; Both Bit & Qubit: Both Physical & Transcendental Time.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (22):1-24.
    Information can be considered as the most fundamental, philosophical, physical and mathematical concept originating from the totality by means of physical and mathematical transcendentalism (the counterpart of philosophical transcendentalism). Classical and quantum information, particularly by their units, bit and qubit, correspond and unify the finite and infinite. As classical information is relevant to finite series and sets, as quantum information, to infinite ones. A fundamental joint relativity of the finite and infinite, of the external and internal (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  63
    Correspondence between the classical and quantum canonical transformation groups from an operator formulation of the wigner function.Leehwa Yeh & Y. S. Kim - 1994 - Foundations of Physics 24 (6):873-884.
    An explicit expression of the “Wigner operator” is derived, such that the Wigner function of a quantum state is equal to the expectation value of this operator with respect to the same state. This Wigner operator leads to a representation-independent procedure for establishing the correspondence between the inhomogeneous symplectic group applicable to linear canonical transformations in classical mechanics and the Weyl-metaplectic group governing the symmetry of unitary transformations in quantum mechanics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6. Quantum/classical correspondence in the light of Bell's inequalities.Leonid A. Khalfin & Boris S. Tsirelson - 1992 - Foundations of Physics 22 (7):879-948.
    Instead of the usual asymptotic passage from quantum mechanics to classical mechanics when a parameter tended to infinity, a sharp boundary is obtained for the domain of existence of classical reality. The last is treated as separable empirical reality following d'Espagnat, described by a mathematical superstructure over quantum dynamics for the universal wave function. Being empirical, this reality is constructed in terms of both fundamental notions and characteristics of observers. It is presupposed that considered observers perceive (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  7. “Two bits less” after quantum-information conservation and their interpretation as “distinguishability / indistinguishability” and “classical / quantum”.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (46):1-7.
    The paper investigates the understanding of quantum indistinguishability after quantum information in comparison with the “classicalquantum mechanics based on the separable complex Hilbert space. The two oppositions, correspondingly “distinguishability / indistinguishability” and “classical / quantum”, available implicitly in the concept of quantum indistinguishability can be interpreted as two “missing” bits of classical information, which are to be added after teleportation of quantum information to be restored the initial state unambiguously. That (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  9
    Complex-Valued Classical Behavior from the Correspondence Limit of Quantum Mechanics with Two Boundary Conditions.Yakir Aharonov & Tomer Shushi - 2022 - Foundations of Physics 52 (3):1-7.
    The two-state-vector formalism presents a time-symmetric approach to the standard quantum mechanics, with particular importance in the description of experiments having pre- and post-selected ensembles. In this paper, using the correspondence limit of the quantum harmonic oscillator in the two-state-vector formalism, we produce harmonic oscillators that possess a classical behavior while having a complex-valued position and momentum. This allows us to discover novel effects that cannot be achieved otherwise. The proposed classical behavior does not describe (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  62
    The incongruent correspondence: Seven non-classical years of old quantum theory.Shahin Kaveh - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 46 (2):239-246.
    The Correspondence Principle of old quantum theory is commonly considered to be the requirement that quantum and classical theories converge in their empirical predictions in the appropriate asymptotic limit. That perception has persisted despite the fact that Bohr and other early proponents of CP clearly did not intend it as a mere requirement, and despite much recent historical work. In this paper, I build on this work by first giving an explicit formulation to the mentioned asymptotic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Fakeons, quantum gravity and the correspondence principle.Damiano Anselmi - manuscript
    The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  86
    Correspondence Truth and Quantum Mechanics.Vassilios Karakostas - 2014 - Axiomathes 24 (3):343-358.
    The logic of a physical theory reflects the structure of the propositions referring to the behaviour of a physical system in the domain of the relevant theory. It is argued in relation to classical mechanics that the propositional structure of the theory allows truth-value assignment in conformity with the traditional conception of a correspondence theory of truth. Every proposition in classical mechanics is assigned a definite truth value, either ‘true’ or ‘false’, describing what is actually the case (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  12.  47
    Bohmian Mechanics, the Quantum-Classical Correspondence and the Classical Limit: The Case of the Square Billiard. [REVIEW]A. Matzkin - 2009 - Foundations of Physics 39 (8):903-920.
    Square billiards are quantum systems complying with the dynamical quantum-classical correspondence. Hence an initially localized wavefunction launched along a classical periodic orbit evolves along that orbit, the spreading of the quantum amplitude being controlled by the spread of the corresponding classical statistical distribution. We investigate wavepacket dynamics and compute the corresponding de Broglie-Bohm trajectories in the quantum square billiard. We also determine the trajectories and statistical distribution dynamics for the equivalent classical (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13. How Classical Particles Emerge From the Quantum World.Dennis Dieks & Andrea Lubberdink - 2011 - Foundations of Physics 41 (6):1051-1064.
    The symmetrization postulates of quantum mechanics (symmetry for bosons, antisymmetry for fermions) are usually taken to entail that quantum particles of the same kind (e.g., electrons) are all in exactly the same state and therefore indistinguishable in the strongest possible sense. These symmetrization postulates possess a general validity that survives the classical limit, and the conclusion seems therefore unavoidable that even classical particles of the same kind must all be in the same state—in clear conflict with (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  14. Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   75 citations  
  15. Anthropomorphic Quantum Darwinism as an Explanation for Classicality.Thomas Durt - 2010 - Foundations of Science 15 (2):177-197.
    According to Zurek, the emergence of a classical world from a quantum substrate could result from a long selection process that privileges the classical bases according to a principle of optimal information. We investigate the consequences of this principle in a simple case, when the system and the environment are two interacting scalar particles supposedly in a pure state. We show that then the classical regime corresponds to a situation for which the entanglement between the particles (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  16. On Classical and Quantum Objectivity.Gabriel Catren - 2008 - Foundations of Physics 38 (5):470-487.
    We propose a conceptual framework for understanding the relationship between observables and operators in mechanics. To do so, we introduce a postulate that establishes a correspondence between the objective properties permitting to identify physical states and the symmetry transformations that modify their gauge dependant properties. We show that the uncertainty principle results from a faithful—or equivariant—realization of this correspondence. It is a consequence of the proposed postulate that the quantum notion of objective physical states is not incomplete, (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  17.  34
    Bohr correspondence principle for large quantum numbers.Richard L. Liboff - 1975 - Foundations of Physics 5 (2):271-293.
    Periodic systems are considered whose increments in quantum energy grow with quantum number. In the limit of large quantum number, systems are found to give correspondence in form between classical and quantum frequency-energy dependences. Solely passing to large quantum numbers, however, does not guarantee the classical spectrum. For the examples cited, successive quantum frequencies remain separated by the incrementhI −1, whereI is independent of quantum number. Frequency correspondence follows in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18.  27
    Classical versus quantum gravity.Wolfgang Drechsler - 1993 - Foundations of Physics 23 (2):261-276.
    Is Einstein's metric theory of gravitation to be quantized to yield a complete and logically consistent picture of the geometry of the real world in the presence of quantized material sources? To answer this question, we give arguments that there is a consistent way to extend general relativity to small distances by incorporating further geometric quantities at the level of the connection into the theory and introducing corresponding field equations for their determination, allowing thereby the metric and the Levi-Civita connection (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  94
    On Quantum-Classical Transition of a Single Particle.Agung Budiyono - 2010 - Foundations of Physics 40 (8):1117-1133.
    We discuss the issue of quantum-classical transition in a system of a single particle with and without external potential. This is done by elaborating the notion of self-trapped wave function recently developed by the author. For a free particle, we show that there is a subset of self-trapped wave functions which is particle-like. Namely, the spatially localized wave packet is moving uniformly with undistorted shape as if the whole wave packet is indeed a classical free particle. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20. Chaos out of order: Quantum mechanics, the correspondence principle and chaos.Gordon Belot & John Earman - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (2):147-182.
    A vast amount of ink has been spilled in both the physics and the philosophy literature on the measurement problem in quantum mechanics. Important as it is, this problem is but one aspect of the more general issue of how, if at all, classical properties can emerge from the quantum descriptions of physical systems. In this paper we will study another aspect of the more general issue-the emergence of classical chaos-which has been receiving increasing attention from (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  21.  61
    Recovering Quantum Logic Within an Extended Classical Framework.Claudio Garola & Sandro Sozzo - 2013 - Erkenntnis 78 (2):399-419.
    We present a procedure which allows us to recover classical and nonclassical logical structures as concrete logics associated with physical theories expressed by means of classical languages. This procedure consists in choosing, for a given theory ${{\mathcal{T}}}$ and classical language ${{\fancyscript{L}}}$ expressing ${{\mathcal{T}}, }$ an observative sublanguage L of ${{\fancyscript{L}}}$ with a notion of truth as correspondence, introducing in L a derived and theory-dependent notion of C-truth (true with certainty), defining a physical preorder $\prec$ induced by (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  20
    From Classical to Quantum Models: The Regularising Rôle of Integrals, Symmetry and Probabilities.Jean-Pierre Gazeau - 2018 - Foundations of Physics 48 (11):1648-1667.
    In physics, one is often misled in thinking that the mathematical model of a system is part of or is that system itself. Think of expressions commonly used in physics like “point” particle, motion “on the line”, “smooth” observables, wave function, and even “going to infinity”, without forgetting perplexing phrases like “classical world” versus “quantum world”.... On the other hand, when a mathematical model becomes really inoperative in regard with correct predictions, one is forced to replace it with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  58
    Embedding Quantum Universes in Classical Ones.Cristian S. Calude, Peter H. Hertling & Karl Svozil - 1999 - Foundations of Physics 29 (3):349-379.
    Do the partial order and ortholattice operations of a quantum logic correspond to the logical implication and connectives of classical logic? Rephrased, How far might a classical understanding of quantum mechanics be, in principle, possible? A celebrated result of Kochen and Specker answers the above question in the negative. However, this answer is just one among various possible ones, not all negative. It is our aim to discuss the above question in terms of mappings of (...) worlds into classical ones, more specifically, in terms of embeddings of quantum logics into classical logics; depending upon the type of restrictions imposed on embeddings, the question may get negative or positive answers. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  98
    Quantum, classical and intermediate: An illustrative example. [REVIEW]Diederik Aerts & Thomas Durt - 1994 - Foundations of Physics 24 (10):1353-1369.
    We present a model that allows one to build structures that evolve continuously from classical to quantum, and we study the intermediate situations, giving rise to structures that are neither classical nor quantum. We construct the closure structure corresponding to the collection of eigenstate sets of these intermediate situations, and demonstrate how the superposition principle disappears during the transition from quantum to classical. We investigate the validity of the axioms of quantum mechanics for (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  25. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  26. Decoherence and the classical limit of quantum mechanics.Valia Allori - 2002 - Dissertation, University of Genova, Italy
    In my dissertation (Rutgers, 2007) I developed the proposal that one can establish that material quantum objects behave classically just in case there is a “local plane wave” regime, which naturally corresponds to the suppression of all quantum interference.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  27. Logical Entropy: Introduction to Classical and Quantum Logical Information theory.David Ellerman - 2018 - Entropy 20 (9):679.
    Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of this paper (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  28.  67
    Mechanics: Non-classical, Non-quantum.Elliott Tammaro - 2012 - Foundations of Physics 42 (2):284-290.
    A non-classical, non-quantum theory, or NCQ, is any fully consistent theory that differs fundamentally from both the corresponding classical and quantum theories, while exhibiting certain features common to both. Such theories are of interest for two primary reasons. Firstly, NCQs arise prominently in semi-classical approximation schemes. Their formal study may yield improved approximation techniques in the near-classical regime. More importantly for the purposes of this note, it may be possible for NCQs to reproduce (...) results over experimentally tested regimes while having a well defined classical limit, and hence are viable alternative theories. We illustrate an NCQ by considering an explicit class of NCQ mechanics. Here this class will be arrived at via a natural generalization of classical mechanics formulated in terms of a probability density functional. (shrink)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  29.  42
    The Problem of the Classical Limit of Quantum Mechanics and the Role of Self-Induced Decoherence.Mario Castagnino & Manuel Gadella - 2006 - Foundations of Physics 36 (6):920-952.
    Our account of the problem of the classical limit of quantum mechanics involves two elements. The first one is self-induced decoherence, conceived as a process that depends on the own dynamics of a closed quantum system governed by a Hamiltonian with continuous spectrum; the study of decoherence is addressed by means of a formalism used to give meaning to the van Hove states with diagonal singularities. The second element is macroscopicity represented by the limit $\hbar \rightarrow 0$ (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  30.  10
    Contextual Unification of Classical and Quantum Physics.Mathias Van Den Bossche & Philippe Grangier - 2023 - Foundations of Physics 53 (2):1-24.
    Following an article by John von Neumann on infinite tensor products, we develop the idea that the usual formalism of quantum mechanics, associated with unitary equivalence of representations, stops working when countable infinities of particles (or degrees of freedom) are encountered. This is because the dimension of the corresponding Hilbert space becomes uncountably infinite, leading to the loss of unitary equivalence, and to sectorisation. By interpreting physically this mathematical fact, we show that it provides a natural way to describe (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  31.  18
    Localizable Particles in the Classical Limit of Quantum Field Theory.Rory Soiffer, Jonah Librande & Benjamin H. Feintzeig - 2021 - Foundations of Physics 51 (2):1-31.
    A number of arguments purport to show that quantum field theory cannot be given an interpretation in terms of localizable particles. We show, in light of such arguments, that the classical ħ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document} limit can aid our understanding of the particle content of quantum field theories. In particular, we demonstrate that for the massive Klein–Gordon field, the classical limits of number operators can be understood to encode (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32. Seven Steps Toward the Classical World.Valia Allori, Detlef Duerr, Nino Zanghi & Sheldon Goldstein - 2002 - Journal of Optics B 4:482–488.
    Classical physics is about real objects, like apples falling from trees, whose motion is governed by Newtonian laws. In standard quantum mechanics only the wave function or the results of measurements exist, and to answer the question of how the classical world can be part of the quantum world is a rather formidable task. However, this is not the case for Bohmian mechanics, which, like classical mechanics, is a theory about real objects. In Bohmian terms, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  33.  6
    Quantum and Relativistic Corrections to Maxwell–Boltzmann Ideal Gas Model from a Quantum Phase Space Approach.Rivo Herivola Manjakamanana Ravelonjato, Ravo Tokiniaina Ranaivoson, Raoelina Andriambololona, Roland Raboanary, Hanitriarivo Rakotoson & Naivo Rabesiranana - 2023 - Foundations of Physics 53 (5):1-20.
    The quantum corrections related to the ideal gas model often considered are those associated to the bosonic or fermionic nature of particles. However, in this work, other kinds of corrections related to the quantum nature of phase space are highlighted. These corrections are introduced as improvements in the expression of the partition function of an ideal gas. Then corrected thermodynamics properties of the ideal gas are deduced. Both the non-relativistic quantum and relativistic quantum cases are considered. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  7
    Aspects of the Quantum-Classical Connection Based on Statistical Maps.Werner Stulpe - 2019 - Foundations of Physics 49 (6):677-692.
    Based on three different types of affine mappings between the corresponding convex sets of states, three different kinds of relations between quantum mechanics and classical physics are reviewed.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  51
    Quantum Properties of a Single Beam Splitter.F. Laloë & W. J. Mullin - 2012 - Foundations of Physics 42 (1):53-67.
    When a single beam-splitter receives two beams of bosons described by Fock states (Bose-Einstein condensates at very low temperatures), interesting generalizations of the two-photon Hong-Ou-Mandel effect take place for larger number of particles. The distributions of particles at two detectors behind the beam splitter can be understood as resulting from the combination of two effects, the spontaneous phase appearing during quantum measurement, and the quantum angle. The latter introduces quantum “population oscillations”, which can be seen as a (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  36. A Semi-Classical Model of the Elementary Process Theory Corresponding to Non-Relativistic Classical Mechanics.Marcoen J. T. F. Cabbolet - 2022 - In And now for something completely different: the Elementary Process Theory. Revised, updated and extended 2nd edition of the dissertation with almost the same title. Utrecht: Eburon Academic Publishers. pp. 255-287.
    Currently there are at least four sizeable projects going on to establish the gravitational acceleration of massive antiparticles on earth. While general relativity and modern quantum theories strictly forbid any repulsive gravity, it has not yet been established experimentally that gravity is attraction only. With that in mind, the Elementary Process Theory (EPT) is a rather abstract theory that has been developed from the hypothesis that massive antiparticles are repulsed by the gravitational field of a body of ordinary matter: (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  8
    Relativistic Quantum Mechanics.Lawrence P. Horwitz - 2015 - Dordrecht: Imprint: Springer.
    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  8
    Role of the Electromagnetic Vacuum in the Transition from Classical to Quantum Mechanics.Luis de la Peña & Ana María Cetto - 2022 - Foundations of Physics 52 (4):1-17.
    We revisit the nonrelativistic problem of a bound, charged particle subject to the random zero-point radiation field, with the purpose of revealing the mechanism that takes it from the initially classical description to the final quantum-mechanical one. The combined effect of the zpf and the radiation reaction force results, after a characteristic time lapse, in the loss of the initial conditions and the concomitant irreversible transition of the dynamics to a stationary regime controlled by the field. In this (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  7
    An Alternative Foundation of Quantum Theory.Inge S. Helland - 2023 - Foundations of Physics 54 (1):1-45.
    A new approach to quantum theory is proposed in this paper. The basis is taken to be theoretical variables, variables that may be accessible or inaccessible, i.e., it may be possible or impossible for an observer to assign arbitrarily sharp numerical values to them. In an epistemic process, the accessible variables are just ideal observations connected to an observer or to some communicating observers. Group actions are defined on these variables, and group representation theory is the basis for developing (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40. Self‐Induced Decoherence and the Classical Limit of Quantum Mechanics.Mario Castagnino & Olimpia Lombardi - 2005 - Philosophy of Science 72 (5):764-776.
    In this paper we argue that the emergence of the classical world from the underlying quantum reality involves two elements: self-induced decoherence and macroscopicity. Self-induced decoherence does not require the openness of the system and its interaction with the environment: a single closed system can decohere when its Hamiltonian has continuous spectrum. We show that, if the system is macroscopic enough, after self-induced decoherence it can be described as an ensemble of classical distributions weighted by their corresponding (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  41.  30
    Relational Quantum Mechanics and Probability.M. Trassinelli - 2018 - Foundations of Physics 48 (9):1092-1111.
    We present a derivation of the third postulate of relational quantum mechanics from the properties of conditional probabilities. The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Born’s rule naturally emerges from the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  9
    The triple-store experiment: a first simultaneous test of classical and quantum probabilities in choice over menus.Andrei Khrennikov, Irina Basieva, Eric Guerci, Sébastien Duchêne & Ismaël Rafaï - 2021 - Theory and Decision 92 (2):387-406.
    Recently quantum probability theory started to be actively used in studies of human decision-making, in particular for the resolution of paradoxes (such as the Allais, Ellsberg, and Machina paradoxes). Previous studies were based on a cognitive metaphor of the quantum double-slit experiment—the basic quantum interference experiment. In this paper, we report on an economics experiment based on a triple-slit experiment design, where the slits are menus of alternatives from which one can choose. The test of nonclassicality is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  35
    From a 1D Completed Scattering and Double Slit Diffraction to the Quantum-Classical Problem for Isolated Systems.Nikolay L. Chuprikov - 2011 - Foundations of Physics 41 (9):1502-1520.
    By probability theory the probability space to underlie the set of statistical data described by the squared modulus of a coherent superposition of microscopically distinct (sub)states (CSMDS) is non-Kolmogorovian and, thus, such data are mutually incompatible. For us this fact means that the squared modulus of a CSMDS cannot be unambiguously interpreted as the probability density and quantum mechanics itself, with its current approach to CSMDSs, does not allow a correct statistical interpretation. By the example of a 1D completed (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  44.  45
    Quantization of space-time and the corresponding quantum mechanics.M. Banai - 1985 - Foundations of Physics 15 (12):1203-1245.
    An axiomatic framework for describing general space-time models is presented. Space-time models to which irreducible propositional systems belong as causal logics are quantum (q) theoretically interpretable and their event spaces are Hilbert spaces. Such aq space-time is proposed via a “canonical” quantization. As a basic assumption, the time t and the radial coordinate r of aq particle satisfy the canonical commutation relation [t,r]=±i $h =$ . The two cases will be considered simultaneously. In that case the event space is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  34
    Quantum physics and the philosophical tradition.Aage Petersen - 1968 - New York,: Belfer Graduate School of Science, Yeshiva University.
    Piercing incisively and deeply into the nature of the overlapping of the material andmental realms. Aage Petersen uncovers the reciprocal relations between quantum physics and theconcepts of metaphysics and epistemology, assessing the extent to which each has influenced theother. The author is eminently qualified to undertake this important work, which grew out of hisclose contact with Neils Bohr and his Copenhagen school during the years 1952-1962.Although themathematical formalism of quantum physics has long since been established, the question of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  46.  24
    Relations Between Different Notions of Degrees of Freedom of a Quantum System and Its Classical Model.Nikola Burić - 2015 - Foundations of Physics 45 (3):253-278.
    There are at least three different notions of degrees of freedom that are important in comparison of quantum and classical dynamical systems. One is related to the type of dynamical equations and inequivalent initial conditions, the other to the structure of the system and the third to the properties of dynamical orbits. In this paper, definitions and comparison in classical and quantum systems of the tree types of DF are formulated and discussed. In particular, we concentrate (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  47.  45
    Quantum Decoherence: A Logical Perspective.Sebastian Fortin & Leonardo Vanni - 2014 - Foundations of Physics 44 (12):1258-1268.
    The so-called classical limit of quantum mechanics is generally studied in terms of the decoherence of the state operator that characterizes a system. This is not the only possible approach to decoherence. In previous works we have presented the possibility of studying the classical limit in terms of the decoherence of relevant observables of the system. On the basis of this approach, in this paper we introduce the classical limit from a logical perspective, by studying the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  71
    Might Quantum-Induced Deviations from the Einstein Equations Detectably Affect Gravitational Wave Propagation?Adrian Kent - 2013 - Foundations of Physics 43 (6):707-718.
    A quantum measurement-like event can produce any of a number of macroscopically distinct results, with corresponding macroscopically distinct gravitational fields, from the same initial state. Hence the probabilistically evolving large-scale structure of space-time is not precisely or even always approximately described by the deterministic Einstein equations.Since the standard treatment of gravitational wave propagation assumes the validity of the Einstein equations, it is questionable whether we should expect all its predictions to be empirically verified. In particular, one might expect the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  49.  23
    Space-Time in Quantum Theory.H. Capellmann - 2021 - Foundations of Physics 51 (2):1-34.
    Quantum Theory, similar to Relativity Theory, requires a new concept of space-time, imposed by a universal constant. While velocity of lightcnot being infinite calls for a redefinition of space-time on large and cosmological scales, quantization of action in terms of a finite, i.e. non vanishing, universal constanthrequires a redefinition of space-time on very small scales. Most importantly, the classical notion of “time”, as one common continuous time variable and nature evolving continuously “in time”, has to be replaced by (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  12
    The Correspondence Principle and the Understanding of Decoherence.Sebastian Fortin & Olimpia Lombardi - 2019 - Foundations of Physics 49 (12):1372-1393.
    Although Bohr’s Correspondence Principle (CP) played a central role in the first days of quantum mechanics, its original version seems to have no present-day relevance. The purpose of this article is to show that the CP, with no need of being interpreted in terms of the quantum-to-classical limit, still plays a relevant role in the understanding of the relationships between the classical and the quantum domains. In particular, it will be argued that a generic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 987