We study ultrafilters produced by forcing, obtaining different combinatorics and related Rudin-Keisler ordering; in particular we answer a question of Baumgartner and Taylor regarding tensor products of ultrafilters. Adapting a method of Blass and Mathias, we show that in most cases the combinatorics satisfied by the ultrafilters recapture the forcing notion in the Lévy model.
We discuss the finite-to-one Rudin-Keisler ordering of ultrafilters on the natural numbers, which we baptize the Rudin-Blass ordering in honour of Professor Andreas Blass who worked extensively in the area. We develop and summarize many of its properties in relation to its bounding and dominating numbers, directedness, and provide applications to continuum theory. In particular, we prove in ZFC alone that there exists an ultrafilter with no Q-point below in the Rudin-Blass ordering.
We prove various results on the notion of ordinal ultrafilters introduced by J. Baumgartner. In particular, we show that this notion of ultrafilter complexity is independent of the more familiar Rudin-Keisler ordering.
Shelah, S., C. Laflamme and B. Hart, Models with second order properties V: A general principle, Annals of Pure and Applied Logic 64 169–194. We present a general framework for carrying out the construction in [2-10] and others of the same type. The unifying factor is a combinatorial principle which we present in terms of a game in which the first player challenges the second player to carry out constructions which would be much easier in a generic extension of the (...) universe, and the second player cheats with the aid of ♦. Section 1 contains an axiomatic framework suitable for the description of a number of related constructions, and the statement of the main theorem 1.9 in terms of this framework. In Section 2 we illustrate the use of our combinatorial principle. The proof of the main result is then carried out in Sections 3–5. (shrink)
We analyze combinatorial properties of open covers of sets of real numbers by using filters on the natural numbers. In fact, the goal of this paper is to characterize known properties related to ω-covers of the space in terms of combinatorial properties of filters associated with these ω-covers. As an example, we show that all finite powers of a set R of real numbers have the covering property of Menger if, and only if, each filter on ω associated with its (...) countable ω-cover is a P + filter. (shrink)
We pursue the study of families of functions on the natural numbers, with emphasis here on the bounded families. The situation being more complicated than the unbounded case, we attack the problem by classifying the families according to their bounding and dominating numbers, the traditional scheme for gaps. Many open questions remain.