Order:
Disambiguations
Daniel Lascar [24]D. Lascar [11]
  1.  37
    Galois Groups of First Order Theories.E. Casanovas, D. Lascar, A. Pillay & M. Ziegler - 2001 - Journal of Mathematical Logic 1 (02):305-319.
    We study the groups Gal L and Gal KP, and the associated equivalence relations EL and EKP, attached to a first order theory T. An example is given where EL≠ EKP. It is proved that EKP is the composition of EL and the closure of EL. Other examples are given showing this is best possible.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  2.  13
    Superstable Groups.Ch Berline & D. Lascar - 1986 - Annals of Pure and Applied Logic 30 (1):1-43.
  3.  28
    An Introduction to Forking.Daniel Lascar & Bruno Poizat - 1979 - Journal of Symbolic Logic 44 (3):330-350.
  4.  28
    On the Category of Models of a Complete Theory.Daniel Lascar - 1982 - Journal of Symbolic Logic 47 (2):249-266.
  5.  30
    Ordre de Rudin-Keisler Et Poids Dans les Theories Stables.Daniel Lascar - 1982 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 28 (27-32):413-430.
  6.  8
    Ordre de Rudin‐Keisler Et Poids Dans les Theories Stables.Daniel Lascar - 1982 - Mathematical Logic Quarterly 28 (27‐32):413-430.
  7.  16
    Les Beaux Automorphismes.Daniel Lascar - 1991 - Archive for Mathematical Logic 31 (1):55-68.
    Assume that the class of partial automorphisms of the monster model of a complete theory has the amalgamation property. The beautiful automorphisms are the automorphisms of models ofT which: 1. are strong, i.e. leave the algebraic closure (inT eq) of the empty set pointwise fixed, 2. are obtained by the Fraïsse construction using the amalgamation property that we have just mentioned. We show that all the beautiful automorphisms have the same theory (in the language ofT plus one unary function symbol (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  8.  14
    Alexandre Borovik and Ali Nesin. Groups of Finite Morley Rank. Oxford Logic Guides, No. 26. Clarendon Press, Oxford University Press, Oxford and New York1994, Xvii + 409 Pp. [REVIEW]Daniel Lascar - 1996 - Journal of Symbolic Logic 61 (2):687-688.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  26
    Countable Models of Nonmultidimensional ℵ0-Stable Theories.Elisabeth Bouscaren & Daniel Lascar - 1983 - Journal of Symbolic Logic 48 (1):377 - 383.
  10.  11
    Stabilité En Théorie des Modèles.Daniel Lascar, Ray Mines, Fred Richman & Wim Ruitenburg - 1990 - Journal of Symbolic Logic 55 (2):883-886.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  11.  11
    Countable Models of Nonmultidimensional ℵ0-Stable Theories.Elisabeth Bouscaren & Daniel Lascar - 1983 - Journal of Symbolic Logic 48 (1):197-205.
  12.  13
    The Indiscernible Topology: A Mock Zariski Topology.Markus Junker & Daniel Lascar - 2001 - Journal of Mathematical Logic 1 (01):99-124.
    We associate with every first order structure [Formula: see text] a family of invariant, locally Noetherian topologies. The structure is almost determined by the topologies, and properties of the structure are reflected by topological properties. We study these topologies in particular for stable structures. In nice cases, we get a behaviour similar to the Zariski topology in algebraically closed fields.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  38
    Les Automorphismes d'Un Ensemble Fortement Minimal.Daniel Lascar - 1992 - Journal of Symbolic Logic 57 (1):238-251.
    Let M be a countable saturated structure, and assume that D(ν) is a strongly minimal formula (without parameter) such that M is the algebraic closure of D(M). We will prove the two following theorems: Theorem 1. If G is a subgroup of $\operatorname{Aut}(\mathfrak{M})$ of countable index, there exists a finite set A in M such that every A-strong automorphism is in G. Theorem 2. Assume that G is a normal subgroup of $\operatorname{Aut}(\mathfrak{M})$ containing an element g such that for all (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Définissabilité dans les théories stables.D. Lascar - 1975 - Logique Et Analyse 18 (71):489.
    No categories
    Translate
     
     
    Export citation  
     
    Bookmark  
  15.  13
    Forking and Fundamental Order in Simple Theories.Daniel Lascar & Anand Pillay - 1999 - Journal of Symbolic Logic 64 (3):1155-1158.
    We give a characterisation of forking in the context of simple theories in terms of the fundamental order.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  16
    Shelah Saharon. Categoricity of Uncountable Theories. Proceedings of the Tarski Symposium, An International Symposium Held to Honor Alfred Tarski on the Occasion of His Seventieth Birthday, Edited by Henkin Leon Et Al., Proceedings of Symposia in Pure Mathematics, Vol. 25, American Mathematical Society, Providence, R.I., 1974, Pp. 187–203. [REVIEW]Daniel Lascar - 1981 - Journal of Symbolic Logic 46 (4):866-867.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17.  17
    Review: Jon Barwise, H. J. Keisler, K. Kunen, Y. N. Moschovakis, A. S. Troelstra, Handbook of Mathematical Logic. [REVIEW]Daniel Lascar - 1984 - Journal of Symbolic Logic 49 (3):968-971.
  18.  6
    Quelques Précisions Sur la D.O.P. Et la Profondeur d'Une Theorie.D. Lascar - 1985 - Journal of Symbolic Logic 50 (2):316-330.
    We give here alternative definitions for the notions that S. Shelah has introduced in recent papers: the dimensional order property and the depth of a theory. We will also give a proof that the depth of a countable theory, when defined, is an ordinal recursive in T.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Logic Colloquium '87.H. Ebbinghaus, J. Fernandez-Prida, M. Garrido, D. Lascar & M. Rodriguez-Artalejo - 1991 - Studia Logica 50 (1):168-169.
  20.  12
    Handbook of Mathematical Logic, Edited by Barwise Jon with the Cooperation of Keisler H. J., Kunen K., Moschovakis Y. N., and Troelstra A. S., Studies in Logic and the Foundations of Mathematics, Vol. 90, North-Holland Publishing Company, Amsterdam, New York, and Oxford, 1978 , Xi + 1165 Pp. [REVIEW]Daniel Lascar - 1984 - Journal of Symbolic Logic 49 (3):968-971.
  21.  17
    Review: Alexandre Borovik, Ali Nesin, Groups of Finite Morley Rank. [REVIEW]Daniel Lascar - 1996 - Journal of Symbolic Logic 61 (2):687-688.
  22.  30
    Why Some People Are Excited by Vaught's Conjecture.Daniel Lascar - 1985 - Journal of Symbolic Logic 50 (4):973-982.
  23.  13
    European Summer Meeting of the Association for Symbolic Logic.H.-D. Ebbinghaus, J. Fernández-Prida, M. Garrido, D. Lascar & M. Rodriguez Artalejo - 1989 - Journal of Symbolic Logic 54 (2):647-672.
  24.  8
    1996 European Summer Meeting of the Association for Symbolic Logic.Daniel Lascar - 1997 - Bulletin of Symbolic Logic 3 (2):242-277.
  25.  5
    European Summer Meeting of the Association for Symbolic Logic, , Granada, Spain, 1987.H. -D. Ebbinghaus, J. Fernández-Prida, M. Garrido, D. Lascar & M. Rodriguez Artalejo - 1989 - Journal of Symbolic Logic 54 (2):647-672.
  26. Review: Saharon Shelah, Leon Henkin, Categoricity of Uncountable Theories. [REVIEW]Daniel Lascar - 1981 - Journal of Symbolic Logic 46 (4):866-867.
  27. Automorphisms of a Strongly Minimal Set.D. Lascar - 1992 - Journal of Symbolic Logic 57 (1):238-251.
  28. Logic Colloquium '80 Papers Intended for the European Summer Meeting of the Association for Symbolic Logic.D. van Dalen, Daniel Lascar, T. J. Smiley & Association for Symbolic Logic - 1982