Order:
  1.  15
    Learning to Distinguish Valid Textual Entailments.Christopher D. Manning & Daniel Cer - unknown
    This paper proposes a new architecture for textual inference in which finding a good alignment is separated from evaluating entailment. Current approaches to semantic inference in question answering and textual entailment have approximated the entailment problem as that of computing the best alignment of the hypothesis to the text, using a locally decomposable matching score. While this formulation is adequate for representing local (word-level) phenomena such as synonymy, it is incapable of representing global interactions, such as that between verb negation (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   4 citations  
  2.  54
    Learning Alignments and Leveraging Natural Logic.Nathanael Chambers, Daniel Cer, Trond Grenager, David Hall, Chloe Kiddon, Bill MacCartney, Marie-Catherine de Marneffe, Daniel Ramage, Eric Yeh & Christopher D. Manning - unknown
    We describe an approach to textual inference that improves alignments at both the typed dependency level and at a deeper semantic level. We present a machine learning approach to alignment scoring, a stochastic search procedure, and a new tool that finds deeper semantic alignments, allowing rapid development of semantic features over the aligned graphs. Further, we describe a complementary semantic component based on natural logic, which shows an added gain of 3.13% accuracy on the RTE3 test set.
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  3.  17
    Aligning Semantic Graphs for Textual Inference and Machine Reading.Marie-Catherine de Marneffe, Trond Grenager, Bill MacCartney, Daniel Cer, Daniel Ramage, Chloe Kiddon & Christopher D. Manning - unknown
    This paper presents our work on textual inference and situates it within the context of the larger goals of machine reading. The textual inference task is to determine if the meaning of one text can be inferred from the meaning of another and from background knowledge. Our system generates semantic graphs as a representation of the meaning of a text. This paper presents new results for aligning pairs of semantic graphs, and proposes the application of natural logic to derive inference (...)
    No categories
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation