22 found
Order:
  1.  30
    An Introduction to Forking.Daniel Lascar & Bruno Poizat - 1979 - Journal of Symbolic Logic 44 (3):330-350.
  2.  35
    On the Category of Models of a Complete Theory.Daniel Lascar - 1982 - Journal of Symbolic Logic 47 (2):249-266.
  3.  34
    Ordre de Rudin-Keisler Et Poids Dans les Theories Stables.Daniel Lascar - 1982 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 28 (27-32):413-430.
  4.  11
    Ordre de Rudin‐Keisler Et Poids Dans les Theories Stables.Daniel Lascar - 1982 - Mathematical Logic Quarterly 28 (27‐32):413-430.
  5.  18
    Les Beaux Automorphismes.Daniel Lascar - 1991 - Archive for Mathematical Logic 31 (1):55-68.
    Assume that the class of partial automorphisms of the monster model of a complete theory has the amalgamation property. The beautiful automorphisms are the automorphisms of models ofT which: 1. are strong, i.e. leave the algebraic closure (inT eq) of the empty set pointwise fixed, 2. are obtained by the Fraïsse construction using the amalgamation property that we have just mentioned. We show that all the beautiful automorphisms have the same theory (in the language ofT plus one unary function symbol (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  6.  29
    Countable Models of Nonmultidimensional ℵ0-Stable Theories.Elisabeth Bouscaren & Daniel Lascar - 1983 - Journal of Symbolic Logic 48 (1):377 - 383.
  7.  16
    Countable Models of Nonmultidimensional ℵ0-Stable Theories.Elisabeth Bouscaren & Daniel Lascar - 1983 - Journal of Symbolic Logic 48 (1):197-205.
  8.  13
    Stabilité En Théorie des Modèles.Daniel Lascar, Ray Mines, Fred Richman & Wim Ruitenburg - 1990 - Journal of Symbolic Logic 55 (2):883-886.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  9.  15
    The Indiscernible Topology: A Mock Zariski Topology.Markus Junker & Daniel Lascar - 2001 - Journal of Mathematical Logic 1 (01):99-124.
    We associate with every first order structure [Formula: see text] a family of invariant, locally Noetherian topologies. The structure is almost determined by the topologies, and properties of the structure are reflected by topological properties. We study these topologies in particular for stable structures. In nice cases, we get a behaviour similar to the Zariski topology in algebraically closed fields.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  10.  16
    Forking and Fundamental Order in Simple Theories.Daniel Lascar & Anand Pillay - 1999 - Journal of Symbolic Logic 64 (3):1155-1158.
    We give a characterisation of forking in the context of simple theories in terms of the fundamental order.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  16
    Alexandre Borovik and Ali Nesin. Groups of Finite Morley Rank. Oxford Logic Guides, No. 26. Clarendon Press, Oxford University Press, Oxford and New York1994, Xvii + 409 Pp. [REVIEW]Daniel Lascar - 1996 - Journal of Symbolic Logic 61 (2):687-688.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  12.  1
    Logic Colloquium ’96: Proceedings of the Colloquium Held in San Sebastián, Spain, July 9–15, 1996.Jesus M. Larrazabal, Daniel Lascar & Grigori Mints - 1998 - Springer.
    The 1996 European Summer Meeting of the Association of Symbolic Logic was held held the University of the Basque Country, at Donostia Spain, on July 9-15, 1996. It was organised by the Institute for Logic, Cognition, Language and Information and the Department of Logic and Philosophy of Sciences of the University of the Basque Coun try. It was supported by: the University of Pais Vasco/Euskal Herriko Unib ertsitatea, the Ministerio de Education y Ciencia, Hezkuntza Saila, Gipuzkoako Foru Aldundia, and Kuxta (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  13. Logic Colloquium '80 Papers Intended for the European Summer Meeting of the Association for Symbolic Logic.D. van Dalen, Daniel Lascar, T. J. Smiley & Association for Symbolic Logic - 1982
  14.  17
    Shelah Saharon. Categoricity of Uncountable Theories. Proceedings of the Tarski Symposium, An International Symposium Held to Honor Alfred Tarski on the Occasion of His Seventieth Birthday, Edited by Henkin Leon Et Al., Proceedings of Symposia in Pure Mathematics, Vol. 25, American Mathematical Society, Providence, R.I., 1974, Pp. 187–203. [REVIEW]Daniel Lascar - 1981 - Journal of Symbolic Logic 46 (4):866-867.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15.  19
    Review: Jon Barwise, H. J. Keisler, K. Kunen, Y. N. Moschovakis, A. S. Troelstra, Handbook of Mathematical Logic. [REVIEW]Daniel Lascar - 1984 - Journal of Symbolic Logic 49 (3):968-971.
  16.  33
    Why Some People Are Excited by Vaught's Conjecture.Daniel Lascar - 1985 - Journal of Symbolic Logic 50 (4):973-982.
  17.  19
    Review: Alexandre Borovik, Ali Nesin, Groups of Finite Morley Rank. [REVIEW]Daniel Lascar - 1996 - Journal of Symbolic Logic 61 (2):687-688.
  18.  14
    Handbook of Mathematical Logic, Edited by Barwise Jon with the Cooperation of Keisler H. J., Kunen K., Moschovakis Y. N., and Troelstra A. S., Studies in Logic and the Foundations of Mathematics, Vol. 90, North-Holland Publishing Company, Amsterdam, New York, and Oxford, 1978 , Xi + 1165 Pp. [REVIEW]Daniel Lascar - 1984 - Journal of Symbolic Logic 49 (3):968-971.
  19.  14
    1996 European Summer Meeting of the Association for Symbolic Logic.Daniel Lascar - 1997 - Bulletin of Symbolic Logic 3 (2):242-277.
  20.  44
    Les Automorphismes d'Un Ensemble Fortement Minimal.Daniel Lascar - 1992 - Journal of Symbolic Logic 57 (1):238-251.
    Let M be a countable saturated structure, and assume that D(ν) is a strongly minimal formula (without parameter) such that M is the algebraic closure of D(M). We will prove the two following theorems: Theorem 1. If G is a subgroup of $\operatorname{Aut}(\mathfrak{M})$ of countable index, there exists a finite set A in M such that every A-strong automorphism is in G. Theorem 2. Assume that G is a normal subgroup of $\operatorname{Aut}(\mathfrak{M})$ containing an element g such that for all (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Review: Saharon Shelah, Leon Henkin, Categoricity of Uncountable Theories. [REVIEW]Daniel Lascar - 1981 - Journal of Symbolic Logic 46 (4):866-867.
  22.  7
    Handbook of Mathematical Logic.Daniel Lascar - 1984 - Journal of Symbolic Logic 49 (3):968-971.
    Direct download  
     
    Export citation  
     
    Bookmark