In a seminal 1977 article, Rumelhart argued that perception required the simultaneous use of multiple sources of information, allowing perceivers to optimally interpret sensory information at many levels of representation in real time as information arrives. Building on Rumelhart's arguments, we present the Interactive Activation hypothesis—the idea that the mechanism used in perception and comprehension to achieve these feats exploits an interactive activation process implemented through the bidirectional propagation of activation among simple processing units. We then examine the interactive activation (...) model of letter and word perception and the TRACE model of speech perception, as early attempts to explore this hypothesis, and review the experimental evidence relevant to their assumptions and predictions. We consider how well these models address the computational challenge posed by the problem of perception, and we consider how consistent they are with evidence from behavioral experiments. We examine empirical and theoretical controversies surrounding the idea of interactive processing, including a controversy that swirls around the relationship between interactive computation and optimal Bayesian inference. Some of the implementation details of early versions of interactive activation models caused deviation from optimality and from aspects of human performance data. More recent versions of these models, however, overcome these deficiencies. Among these is a model called the multinomial interactive activation model, which explicitly links interactive activation and Bayesian computations. We also review evidence from neurophysiological and neuroimaging studies supporting the view that interactive processing is a characteristic of the perceptual processing machinery in the brain. In sum, we argue that a computational analysis, as well as behavioral and neuroscience evidence, all support the Interactive Activation hypothesis. The evidence suggests that contemporary versions of models based on the idea of interactive activation continue to provide a basis for efforts to achieve a fuller understanding of the process of perception. (shrink)
The complex-systems approach to cognitive science seeks to move beyond the formalism of information exchange and to situate cognition within the broader formalism of energy flow. Changes in cognitive performance exhibit a fractal (i.e., power-law) relationship between size and time scale. These fractal fluctuations reflect the flow of energy at all scales governing cognition. Information transfer, as traditionally understood in the cognitive sciences, may be a subset of this multiscale energy flow. The cognitive system exhibits not just a single power-law (...) relationship between fluctuation size and time scale but actually exhibits many power-law relationships, whether over time or space. This change in fractal scaling, that is, multifractality, provides new insights into changes in energy flow through the cognitive system. We survey recent findings demonstrating the role of multifractality in (a) understanding atypical developmental outcomes, and (b) predicting cognitive change. We propose that multifractality provides insights into energy flows driving the emergence of cognitive structure. (shrink)
Computational modeling and eye-tracking were used to investigate how phonological and semantic information interact to influence the time course of spoken word recognition. We extended our recent models to account for new evidence that competition among phonological neighbors influences activation of semantically related concepts during spoken word recognition . The model made a novel prediction: Semantic input modulates the effect of phonological neighbors on target word processing, producing an approximately inverted-U-shaped pattern with a high phonological density advantage at an intermediate (...) level of semantic input—in contrast to the typical disadvantage for high phonological density words in spoken word recognition. This prediction was confirmed with a new analysis of the Apfelbaum et al. data and in a visual world paradigm experiment with preview duration serving as a manipulation of strength of semantic input. These results are consistent with our previous claim that strongly active neighbors produce net inhibitory effects and weakly active neighbors produce net facilitative effects. (shrink)