We give an axiomatic framework for the non-modular simple 0-categorical structures constructed by Hrushovski. This allows us to verify some of their properties in a uniform way, and to show that these properties are preserved by iterations of the construction.
An ω-categorical supersimple group is finite-by-abelian-by-finite, and has finite SU-rank. Every definable subgroup is commensurable with an acl( $\emptyset$ )-definable subgroup. Every finitely based regular type in a CM-trivial ω-categorical simple theory is non-orthogonal to a type of SU-rank 1. In particular, a supersimple ω-categorical CM-trivial theory has finite SU-rank.
We are concerned with identifying by how much a finite cover of an 0-categorical structure differs from a sequence of free covers. The main results show that this is measured by automorphism groups which are nilpotent-by-abelian. In the language of covers, these results say that every finite cover can be decomposed naturally into linked, superlinked and free covers. The superlinked covers arise from covers over a different base, and to describe this properly we introduce the notion of a quasi-cover.These results (...) generalise results of the second author obtained in the case where the base of the cover is a grassmannian of a disintegrated set. They also give a complete proof of a statement of the second author extending this case to the case of a grassmannian of a modular set. To do this, we need to analyse the possible superlinked covers of such a set.We also give a combinatorial condition on the base of a cover which guarantees various chain conditions on finite covers over this base, and introduce a pregeometry which is useful in the analysis of finite covers with simple fibre groups. (shrink)
We construct a stable one-based, trivial theory with a reduct which is not trivial. This answers a question of John B. Goode. Using this, we construct a stable theory which is n-ample for all natural numbers n, and does not interpret an infinite group.
Using data on the ‘career’ paths of one thousand ‘leading scientists’ from 1450 to 1900, what is conventionally called the ‘rise of modern science’ is mapped as a changing geography of scientific practice in urban networks. Four distinctive networks of scientific practice are identified. A primate network centred on Padua and central and northern Italy in the sixteenth century expands across the Alps to become a polycentric network in the seventeenth century, which in turn dissipates into a weak polycentric network (...) in the eighteenth century. The nineteenth century marks a huge change of scale as a primate network centred on Berlin and dominated by German-speaking universities. These geographies are interpreted as core-producing processes in Wallerstein’s modern world-system; the rise of modern scientific practice is central to the development of structures of knowledge that relate to, but do not mirror, material changes in the system. (shrink)
An intermediate stage in Hrushovski’s construction of flat strongly minimal structures in a relational language L produces ω-stable structures of rank ω. We analyze the pregeometries given by forking on the regular type of rank ω in these structures. We show that varying L can affect the isomorphism type of the pregeometry, but not its finite subpregeometries. A sequel will compare these to the pregeometries of the strongly minimal structures.
We are concerned with the following problem. Suppose Γ and Σ are closed permutation groups on infinite sets C and W and ρ: Γ → Σ is a non-split, continuous epimorphism with finite kernel. Describe the possibilities for ρ. Here, we consider the case where ρ arises from a finite cover π: C → W. We give reasonably general conditions on the permutation structure W;Σ which allow us to prove that these covers arise in two possible ways. The first way, (...) reminiscent of covers of topological spaces, is as a covering of some Σ-invariant digraph on W. The second construction is less easy to describe, but produces the most familiar of these types of covers: a vector space covering its projective space. (shrink)
We show that the N₀-categorical structures produced by Hrushovski's predimension construction with a control function fit neatly into Shelah's $SOP_n $ hierarchy: if they are not simple, then they have SOP₃ and NSOP₄. We also show that structures produced without using a control function can be undecidable and have SOP.
We investigate the isomorphism types of combinatorial geometries arising from Hrushovski's flat strongly minimal structures and answer some questions from Hrushovski's original paper.