Order:
Disambiguations
Dev Kumar Roy [5]Dev K. Roy [4]
  1.  26
    R. E. Presented Linear Orders.Dev Kumar Roy - 1983 - Journal of Symbolic Logic 48 (2):369-376.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  23
    The Shortest Definition of a Number in Peano Arithmetic.Dev K. Roy - 2003 - Mathematical Logic Quarterly 49 (1):83-86.
    The shortest definition of a number by a first order formula with one free variable, where the notion of a formula defining a number extends a notion used by Boolos in a proof of the Incompleteness Theorem, is shown to be non computable. This is followed by an examination of the complexity of sets associated with this function.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  22
    Linear Order Types of Nonrecursive Presentability.Dev Kumar Roy - 1985 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 31 (31-34):495-501.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  21
    Effective Extensions of Partial Orders.Dev Kumar Roy - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (3):233-236.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  10
    Linear Order Types of Nonrecursive Presentability.Dev Kumar Roy - 1985 - Mathematical Logic Quarterly 31 (31‐34):495-501.
  6.  8
    Effective Extensions of Partial Orders.Dev Kumar Roy - 1990 - Mathematical Logic Quarterly 36 (3):233-236.
  7.  28
    Finite Condensations of Recursive Linear Orders.Dev K. Roy & Richard Watnick - 1988 - Studia Logica 47 (4):311 - 317.
    The complexity of aII 4 set of natural numbers is encoded into a linear order to show that the finite condensation of a recursive linear order can beII 2–II 1. A priority argument establishes the same result, and is extended to a complete classification of finite condensations iterated finitely many times.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  8.  11
    On Berry's Paradox and Nondiagonal Constructions.Dev K. Roy - 1999 - Complexity 4 (3):35-38.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  9.  46
    Recursive Versus Recursively Enumerable Binary Relations.Dev K. Roy - 1993 - Studia Logica 52 (4):587 - 593.
    The properties of antisymmetry and linearity are easily seen to be sufficient for a recursively enumerable binary relation to be recursively isomorphic to a recursive relation. Removing either condition allows for the existence of a structure where no recursive isomorph exists, and natural examples of such structures are surveyed.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark