31 found
Order:
  1.  1
    A Language and Axioms for Explicit Mathematics.Solomon Feferman, J. N. Crossley, Maurice Boffa, Dirk van Dalen & Kenneth Mcaloon - 1984 - Journal of Symbolic Logic 49 (1):308-311.
  2.  22
    From Brouwerian Counter Examples to the Creating Subject.van Dalen Dirk - 1999 - Studia Logica 62 (2):305-314.
    The original Brouwerian counter examples were algorithmic in nature; after the introduction of choice sequences, Brouwer devised a version which did not depend on algorithms. This is the origin of the creating subject technique. The method allowed stronger refutations of classical principles. Here it is used to show that negative dense subsets of the continuum are indecomposable.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  3.  48
    Zermelo and the Skolem Paradox.Van Dalen Dirk & Ebbinghaus Heinz-Dieter - 2000 - Bulletin of Symbolic Logic 6 (2):145-161.
  4.  18
    Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt.Mark Van Atten, Dirk van Dalen & Richard Tieszen - 2002 - Philosophia Mathematica 10 (2):203-226.
    Brouwer and Weyl recognized that the intuitive continuum requires a mathematical analysis of a kind that set theory is not able to provide. As an alternative, Brouwer introduced choice sequences. We first describe the features of the intuitive continuum that prompted this development, focusing in particular on the flow of internal time as described in Husserl's phenomenology. Then we look at choice sequences and their logic. Finally, we investigate the differences between Brouwer and Weyl, and argue that Weyl's conception of (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  5.  60
    Dedicated to Mrs. Gertrud Zermelo on the Occasion of Her 95th Birthday.Dirk van Dalen & Heinz-Dieter Ebbinghaus - 2000 - Bulletin of Symbolic Logic 6 (2).
  6.  53
    Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt.Mark van Atten, Dirk van Dalen & And Richard Tieszen - 2002 - Philosophia Mathematica 10 (2):203-226.
    Brouwer and Weyl recognized that the intuitive continuum requires a mathematical analysis of a kind that set theory is not able to provide. As an alternative, Brouwer introduced choice sequences. We first describe the features of the intuitive continuum that prompted this development, focusing in particular on the flow of internal time as described in Husserl's phenomenology. Then we look at choice sequences and their logic. Finally, we investigate the differences between Brouwer and Weyl, and argue that Weyl's conception of (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  7. Fraenkel's Book Zehn Vorlesungen Über Die Grundlegung der Mengenlehre,[Fraenkel 1927] Was About to Appear. With the Grundlagenstreit Reaching (in Print!) a Level of Personal Abuse Un-Usual in the Quiet Circles of Pure Mathematics, Brouwer Was Rather Sensitive, Where the Expositions of His Ideas Were Concerned. So When He Thought That.Dirk van Dalen - 2000 - Bulletin of Symbolic Logic 6 (3).
     
    Export citation  
     
    My bibliography   3 citations  
  8.  2
    Mystic, Geometer, and Intuitionist. The Life of L. E. J. Brouwer. Volume 1. The Dawning Revolution.Dirk van Dalen - 2001 - Bulletin of Symbolic Logic 7 (1):62-65.
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  9.  55
    Hermann Weyl's Intuitionistic Mathematics.Van Dalen Dirk - 1995 - Bulletin of Symbolic Logic 1 (2):145-169.
  10.  15
    Fans Generated by Nondeterministic Automata.Dirk van Dalen - 1968 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 14 (18):273-278.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  11.  8
    Variants of Rescher's Semantics for Preference Logic and Some Completeness Theorems.Dirk van Dalen - 1974 - Studia Logica 33 (2):163-181.
  12.  10
    How Connected is the Intuitionistic Continuum?Dirk van Dalen - 1997 - Journal of Symbolic Logic 62 (4):1147-1150.
  13. Intuitionistic Logic.Dirk van Dalen - 2002 - In D. M. Gabbay & F. Guenthner (eds.), ¸ Itegabbay2002. Kluwer Academic Publishers. pp. 1-115.
     
    Export citation  
     
    My bibliography   1 citation  
  14.  11
    Jacques Herbrand: Logical Writings. [REVIEW]Dirk Van Dalen - 1974 - Journal of Philosophy 71 (15):544-549.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography  
  15. Dedicated to Dana Scott on His Sixtieth Birthday.Dirk van Dalen - 1995 - Bulletin of Symbolic Logic 1 (2).
  16.  15
    Snapshots From Brouwer's Universe.Dirk van Dalen - unknown
    Direct download  
     
    Export citation  
     
    My bibliography  
  17.  33
    Arguments for the Continuity Principle.Mark van Atten & Dirk van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3):329-347.
  18.  7
    Why Constructive Mathematics?Dirk van Dalen - 1995 - Vienna Circle Institute Yearbook 3:141-157.
    The situation in constructive mathematics in the nineties is so vastly different from that in the thirties, that it is worthwhile to pause a moment to survey the development in the intermediate years. In doing so, I follow the example of Heyting, who at certain intervals took stock of intuitionistic mathematics, which for a long time was the only variety of constructive mathematics. Heyting entered the foundational debate in 1930 at the occasion of the famous Königsberg meeting.
    Direct download  
     
    Export citation  
     
    My bibliography  
  19.  29
    Brouwer and Fraenkel on Intuitionism.Van Dalen Dirk - 2000 - Bulletin of Symbolic Logic 6 (3):284-310.
  20.  10
    Eine Bemerkung zum Aufsatz „Der Fundamentalsatz der Algebra und der Intuitionismus “von H. Kneser.Dirk van Dalen - 1985 - Archive for Mathematical Logic 25 (1):43-44.
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  21.  10
    Reducibilities in Intuitionistic Topology.Van Dalen Dirk - 1968 - Journal of Symbolic Logic 33 (3):412-417.
  22.  3
    Fans Generated by Nondeterministic Automata.Dirk van Dalen - 1968 - Mathematical Logic Quarterly 14 (18):273-278.
  23.  3
    Review: Elliott Mendelson, Introduction to Mathematical Logic. [REVIEW]Dirk van Dalen - 1969 - Journal of Symbolic Logic 34 (1):110-111.
  24.  1
    Counting the Number of Equivalence Classes of Borel and Coanalytic Equivalence Relations.Equivalences Generated by Families of Borel Sets.A Reflection Phenomenon in Descriptive Set Theory.Equivalence Relations, Projective and Beyond.Counting Equivalence Classes for Co-Κ-Souslin Equivalence Relations.On Lusin's Restricted Continuum Problem. [REVIEW]Alain Louveau, Jack H. Silver, John P. Burgess, L. Harrington, R. Sami, Maurice Boffa, Dirk van Dalen, Kenneth McAlloon, Leo Harrington, Saharon Shelah, D. van Dalen, D. Lascar, T. J. Smiley & Jacques Stern - 1987 - Journal of Symbolic Logic 52 (3):869.
  25.  2
    Review: M. P. Fourman, D. S. Scott, C. J. Mulvey, Sheaves and Logic. [REVIEW]Dirk van Dalen - 1983 - Journal of Symbolic Logic 48 (4):1201-1203.
  26. Algorithms and Decision Problems: A Crash Course in Recursion Theory.Dirk van Dalen - 1989 - Journal of Symbolic Logic 54 (3):1094-1095.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  27. Computer Science Logic.Dirk van Dalen & Marc Bezem (eds.) - 1997 - Springer.
     
    Export citation  
     
    My bibliography  
  28. Fourman M. P. And Scott D. S.. Sheaves and Logic. Applications of Sheaves, Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham, July 9–21, 1977, Edited by Fourman M. P., Mulvey C. J., and Scott D. S., Lecture Notes in Mathematics, Vol. 753, Springer-Verlag, Berlin, Heidelberg, and New York, 1979, Pp. 302–401. [REVIEW]Dirk van Dalen - 1983 - Journal of Symbolic Logic 48 (4):1201-1203.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  29. Heinz-Dieter Ebbinghaus. Zermelo and the Skolem Paradox.Dirk Van Dalen - 2000 - Bulletin of Symbolic Logic 1 (2):145-161.
  30. Mystic, Geometer, and Intuitionist. The Life of L. E. J. Brouwer. Volume 2: Hope and Disillusion.Dirk van Dalen - 2007 - Studia Logica 87 (1):135-138.
     
    Export citation  
     
    My bibliography  
  31. Where Α and Range Over Choice Sequences of Natural Numbers, M and X Over Natural Numbers, and Αm Stands for〈 Α (0), Α (1),..., Α (M− 1)〉, the Initial Segment of Α of Length M. An Immediate Consequence of WC-N is That All Full Functions Are Contin-Uous, and, as a Corollary, That the Continuum is Unsplittable [28]. Note That. [REVIEW]Mark van Atten & Dirk van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3).