30 found
Order:
  1.  10
    A Language and Axioms for Explicit Mathematics.Solomon Feferman, J. N. Crossley, Maurice Boffa, Dirk van Dalen & Kenneth Mcaloon - 1984 - Journal of Symbolic Logic 49 (1):308-311.
  2. Intuitionistic Logic.Dirk van Dalen - 2002 - In D. M. Gabbay & F. Guenthner (eds.), ¸ Itegabbay2002. Kluwer Academic Publishers. pp. 1-115.
     
    Export citation  
     
    Bookmark   25 citations  
  3.  45
    Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt.Mark Van Atten, Dirk van Dalen & Richard Tieszen - 2002 - Philosophia Mathematica 10 (2):203-226.
    Brouwer and Weyl recognized that the intuitive continuum requires a mathematical analysis of a kind that set theory is not able to provide. As an alternative, Brouwer introduced choice sequences. We first describe the features of the intuitive continuum that prompted this development, focusing in particular on the flow of internal time as described in Husserl's phenomenology. Then we look at choice sequences and their logic. Finally, we investigate the differences between Brouwer and Weyl, and argue that Weyl's conception of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  4.  85
    Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt.Mark van Atten, Dirk van Dalen & Richard Tieszen - 2002 - Philosophia Mathematica 10 (2):203-226.
    Brouwer and Weyl recognized that the intuitive continuum requires a mathematical analysis of a kind that set theory is not able to provide. As an alternative, Brouwer introduced choice sequences. We first describe the features of the intuitive continuum that prompted this development, focusing in particular on the flow of internal time as described in Husserl's phenomenology. Then we look at choice sequences and their logic. Finally, we investigate the differences between Brouwer and Weyl, and argue that Weyl's conception of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  5.  90
    Zermelo and the Skolem Paradox.Dirk Van Dalen & Heinz-Dieter Ebbinghaus - 2000 - Bulletin of Symbolic Logic 6 (2):145-161.
  6.  47
    From Brouwerian Counter Examples to the Creating Subject.Dirk van Dalen - 1999 - Studia Logica 62 (2):305-314.
    The original Brouwerian counter examples were algorithmic in nature; after the introduction of choice sequences, Brouwer devised a version which did not depend on algorithms. This is the origin of the creating subject technique. The method allowed stronger refutations of classical principles. Here it is used to show that negative dense subsets of the continuum are indecomposable.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  7.  76
    Hermann Weyl's Intuitionistic Mathematics.Dirk van Dalen - 1995 - Bulletin of Symbolic Logic 1 (2):145-169.
  8.  62
    Arguments for the Continuity Principle.Mark van Atten & Dirk van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3):329-347.
  9.  47
    How Connected is the Intuitionistic Continuum?Dirk van Dalen - 1997 - Journal of Symbolic Logic 62 (4):1147-1150.
  10. Fraenkel's Book Zehn Vorlesungen Über Die Grundlegung der Mengenlehre,[Fraenkel 1927] Was About to Appear. With the Grundlagenstreit Reaching (in Print!) a Level of Personal Abuse Un-Usual in the Quiet Circles of Pure Mathematics, Brouwer Was Rather Sensitive, Where the Expositions of His Ideas Were Concerned. So When He Thought That.Dirk van Dalen - 2000 - Bulletin of Symbolic Logic 6 (3).
  11.  54
    Brouwer and Fraenkel on Intuitionism.Dirk van Dalen - 2000 - Bulletin of Symbolic Logic 6 (3):284-310.
  12.  25
    Variants of Rescher's Semantics for Preference Logic and Some Completeness Theorems.Dirk van Dalen - 1974 - Studia Logica 33 (2):163-181.
  13.  11
    Algorithms and Decision Problems: A Crash Course in Recursion Theory.Dirk van Dalen - 1989 - Journal of Symbolic Logic 54 (3):1094-1095.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Dedicated to Dana Scott on His Sixtieth Birthday.Dirk van Dalen - 1995 - Bulletin of Symbolic Logic 1 (2).
  15. Computer Science Logic.Dirk van Dalen & Marc Bezem (eds.) - 1997 - Springer.
     
    Export citation  
     
    Bookmark  
  16.  71
    Dedicated to Mrs. Gertrud Zermelo on the Occasion of Her 95th Birthday.Dirk van Dalen & Heinz-Dieter Ebbinghaus - 2000 - Bulletin of Symbolic Logic 6 (2).
  17.  31
    Dirk Van Dalen. Mystic, Geometer, and Intuitionist: The Life of L. E. J. Brouwer. Volume 2: Hope and Disillusion. Oxford: Clarendon Press, 2005. Pp. X + 441–946. ISBN 0-19-851620-7. [REVIEW]Dirk Van Dalen - 2007 - Philosophia Mathematica 15 (1):111-116.
    Volume 1 of this biography of L. E. J. Brouwer was published in 1999.1 The volume under review here covers the period from the early nineteen twenties until Brouwer's death in 1966. It also includes a short epilogue that discusses the disposition of Brouwer's estate after his death, his influence on others, the paths of some of his students and colleagues, and other matters. Van Dalen notes in the Preface that in preparing this volume he consulted some historical studies that (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  18. Eine Bemerkung zum Aufsatz „Der Fundamentalsatz der Algebra und der Intuitionismus “von H. Kneser.Dirk van Dalen - 1985 - Archive for Mathematical Logic 25 (1):43-44.
    Translate
     
     
    Export citation  
     
    Bookmark  
  19.  10
    Fans Generated by Nondeterministic Automata.Dirk van Dalen - 1968 - Mathematical Logic Quarterly 14 (18):273-278.
  20.  20
    Fans Generated by Nondeterministic Automata.Dirk van Dalen - 1968 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 14 (18):273-278.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  21
    Fourman M. P. And Scott D. S.. Sheaves and Logic. Applications of Sheaves, Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham, July 9–21, 1977, Edited by Fourman M. P., Mulvey C. J., and Scott D. S., Lecture Notes in Mathematics, Vol. 753, Springer-Verlag, Berlin, Heidelberg, and New York, 1979, Pp. 302–401. [REVIEW]Dirk van Dalen - 1983 - Journal of Symbolic Logic 48 (4):1201-1203.
  22. Heinz-Dieter Ebbinghaus. Zermelo and the Skolem Paradox.Dirk Van Dalen - 2000 - Bulletin of Symbolic Logic 1 (2):145-161.
  23. Mystic, Geometer, and Intuitionist. The Life of L. E. J. Brouwer. Volume 2: Hope and Disillusion.Dirk van Dalen - 2007 - Studia Logica 87 (1):135-138.
     
    Export citation  
     
    Bookmark  
  24.  21
    Review: Elliott Mendelson, Introduction to Mathematical Logic. [REVIEW]Dirk van Dalen - 1969 - Journal of Symbolic Logic 34 (1):110-111.
  25.  26
    Reducibilities in Intuitionistic Topology.Dirk Van Dalen - 1968 - Journal of Symbolic Logic 33 (3):412-417.
  26.  10
    Review: M. P. Fourman, D. S. Scott, C. J. Mulvey, Sheaves and Logic. [REVIEW]Dirk van Dalen - 1983 - Journal of Symbolic Logic 48 (4):1201-1203.
  27.  29
    Snapshots From Brouwer's Universe.Dirk van Dalen - unknown
  28. Where Α and Range Over Choice Sequences of Natural Numbers, M and X Over Natural Numbers, and Αm Stands for〈 Α (0), Α (1),..., Α (M− 1)〉, the Initial Segment of Α of Length M. An Immediate Consequence of WC-N is That All Full Functions Are Contin-Uous, and, as a Corollary, That the Continuum is Unsplittable [28]. Note That. [REVIEW]Mark van Atten & Dirk van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3).
  29.  20
    Why Constructive Mathematics?Dirk van Dalen - 1995 - Vienna Circle Institute Yearbook 3:141-157.
    The situation in constructive mathematics in the nineties is so vastly different from that in the thirties, that it is worthwhile to pause a moment to survey the development in the intermediate years. In doing so, I follow the example of Heyting, who at certain intervals took stock of intuitionistic mathematics, which for a long time was the only variety of constructive mathematics. Heyting entered the foundational debate in 1930 at the occasion of the famous Königsberg meeting.
    Direct download  
     
    Export citation  
     
    Bookmark  
  30.  8
    Zermelo And The Skolem Paradox, By, Pages 145 -- 161.Dirk van Dalen & Heinz-Dieter Ebbinghaus - 2000 - Bulletin of Symbolic Logic 6 (2):145-161.
    Direct download  
     
    Export citation  
     
    Bookmark