A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantummechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, (...) but we argue that the temptation should be resisted. Applying lessons from this analysis, we demonstrate (using methods similar to those of Zurek's envariance-based derivation) that the Born rule is the uniquely rational way of apportioning credence in Everettianquantummechanics. In doing so, we rely on a single key principle: changes purely to the environment do not affect the probabilities one ought to assign to measurement outcomes in a local subsystem. We arrive at a method for assigning probabilities in cases that involve both classical and quantum self-locating uncertainty. This method provides unique answers to quantum Sleeping Beauty problems, as well as a well-defined procedure for calculating probabilities in quantum cosmological multiverses with multiple similar observers. (shrink)
David Wallace has given a decision-theoretic argument for the Born Rule in the context of Everettianquantummechanics. This approach promises to resolve some long-standing problems with probability in EQM, but it has faced plenty of resistance. One kind of objection charges that the requisite notion of decision-theoretic uncertainty is unavailable in the Everettian picture, so that the argument cannot gain any traction; another kind of objection grants the proof’s applicability and targets the premises. In this (...) article I propose some novel principles connecting the physics of EQM with the metaphysics of modality, and argue that in the resulting framework the incoherence problem does not arise. These principles also help to justify one of the most controversial premises of Wallace’s argument, ‘branching indifference’. Absent any a priori reason to align the metaphysics with the physics in some other way, the proposed principles can be adopted on grounds of theoretical utility. The upshot is that Everettians can, after all, make clear sense of objective probability. 1 Introduction2 Setup3 Individualism versus Collectivism4 The Ingredients of Indexicalism5 Indexicalism and Incoherence5.1 The trivialization problem5.2 The uncertainty problem6 Indexicalism and Branching Indifference6.1 Introducing branching indifference6.2 The pragmatic defence of branching indifference6.3 The non-existence defence of branching indifference6.4 The indexicalist defence of branching indifference7 Conclusion. (shrink)
In this paper I assess the prospects for combining contemporary Everettianquantummechanics (EQM) with branching-time semantics in the tradition of Kripke, Prior, Thomason and Belnap. I begin by outlining the salient features of ‘decoherence-based’ EQM, and of the ‘consistent histories’ formalism that is particularly apt for conceptual discussions in EQM. This formalism permits of both ‘branching worlds’ and ‘parallel worlds’ interpretations; the metaphysics of EQM is in this sense underdetermined by the physics. A prominent argument due (...) to Lewis (On the Plurality of Worlds, 1986 ) supports the non-branching interpretation. Belnap et al. (Facing the Future: Agents and Choices in Our Indeterministic World, 2001 ) refer to Lewis’ argument as the ‘Assertion problem’, and propose a pragmatic response to it. I argue that their response is unattractively ad hoc and complex, and that it prevents an Everettian who adopts branching-time semantics from making clear sense of objective probability. The upshot is that Everettians are better off without branching-time semantics. I conclude by discussing and rejecting an alternative possible motivation for branching time. (shrink)
Simon Saunders and David Wallace have proposed an attractive semantics for interpreting linguistic communities embedded in an Everettian multiverse. It provides a charitable interpretation of our ordinary talk about the future, and allows us to retain a principle of bivalence for propositions and to retain the law of excluded middle in the logic of propositions about the future. But difficulties arise when it comes to providing an appropriate account of the metaphysics of macroscopic objects and events. I evaluate various (...) metaphysical frameworks which might be combined with the Saunders–Wallace semantics. I conclude that the most appropriate metaphysics to underwrite the semantics renders Everettianquantummechanics a theory of non-overlapping worlds. (shrink)
Everettianquantummechanics faces the challenge of how to make sense of probability and probabilistic reasoning in a setting where there is typically no unique outcome of measurements. Wallace has built on a proof by Deutsch to argue that a notion of probability can be recovered in the many worlds setting. In particular, Wallace argues that a rational agent has to assign probabilities in accordance with the Born rule. This argument relies on a rationality constraint that Wallace (...) calls state supervenience. I argue that state supervenience is not defensible as a rationality constraint for Everettian agents unless we already invoke probabilistic notions. (shrink)
Everettianquantummechanics results in ‘multiple, emergent, branching quasi-classical realities’ . The possible outcomes of measurement as per ‘orthodox’ quantummechanics are, in EQM, all instantiated. Given this metaphysics, Everettians face the ‘probability problem’—how to make sense of probabilities and recover the Born rule. To solve the probability problem, Wallace, following Deutsch , has derived a quantum representation theorem. I argue that Wallace’s solution to the probability problem is unsuccessful, as follows. First, I examine (...) one of the axioms of rationality used to derive the theorem, ‘branching indifference’ . I argue that Wallace is not successful in showing that BI is rational. While I think it is correct to put the burden of proof on Wallace to motivate BI as an axiom of rationality, it does not follow from his failing to do so that BI is not rational. Thus, second, I show that there is an alternative strategy for setting one’s credences in the face of branching which is rational and which violates BI. This is ‘branch counting’ . Wallace is aware of BC and has proffered various arguments against it. However, third, I argue that Wallace’s arguments against BC are unpersuasive. I conclude that the probability problem in EQM persists. 1 Introduction2 Branching Indifference2.1 The positive argument for branching indifference2.2 The negative argument for branching indifference2.3 Branching indifference section summary3 Branch Counting3.1 Branch counting is rational under the subjective-uncertainty viewpoint3.2 Branch counting is rational under the objective-determinism viewpoint3.3 Branch counting section summary4 Number of Branches4.1 Veracity of the framework4.2 No such thing as the number of branches4.2.1 The number of branches is indeterminate4.2.2 The number of branches is indeterminable4.3 Rationality and weight5 Conclusion. (shrink)
The main difficulty facing no-collapse theories of quantummechanics in the Everettian tradition concerns the role of probability within a theory in which every possible outcome of a measurement actually occurs. The problem is two-fold: First, what do probability claims mean within such a theory? Second, what ensures that the probabilities attached to measurement outcomes match those of standard quantummechanics? Deutsch has recently proposed a decision-theoretic solution to the second problem, according to which agents (...) are rationally required to weight the outcomes of measurements according to the standard quantum-mechanical probability measure. I show that this argument admits counterexamples, and hence fails to establish the standard probability weighting as a rational requirement. (shrink)
Having analyzed the formal aspects of Wallace’s proof of the Born rule, we now discuss the concepts and axioms upon which it is built. Justification for most axioms is shown to be problematic, and at times contradictory. Some of the problems are caused by ambiguities in the concepts used. We conclude the axioms are not reasonable enough to be taken as mandates of rationality in EverettianQuantumMechanics. This invalidates the interpretation of Wallace’s result as meaning it (...) would be rational for Everettian agents to decide using the Born rule. (shrink)
The human story behind Everettianquantummechanics Content Type Journal Article Pages 1-4 DOI 10.1007/s11016-010-9510-4 Authors Alastair Wilson, University College, Oxford, OX1 4BH UK Journal Metascience Online ISSN 1467-9981 Print ISSN 0815-0796.
Everettian Interpretations of QuantumMechanics Between the 1920s and the 1950s, the mathematical results of quantummechanics were interpreted according to what is often referred to as “the standard interpretation” or the “Copenhagen interpretation.” This interpretation is known as the “collapse interpretation" because it supposes that an observer external to a system causes the system, … Continue reading Everettian Interpretations of QuantumMechanics →.
To solve the probability problem of the Many Worlds Interpretation of QuantumMechanics, D. Wallace has presented a formal proof of the Born rule via decision theory, as proposed by D. Deutsch. The idea is to get subjective probabilities from rational decisions related to quantum measurements, showing the non-probabilistic parts of the quantum formalism, plus some rational constraints, ensure the squared modulus of quantum amplitudes play the role of such probabilities. We provide a new presentation (...) of Wallace’s proof, reorganized to simplify some arguments, and analyze it from a formal perspective. Similarities with classical decision theory are made explicit, to clarify its structure and main ideas. A simpler notation is used, and details are filled in, making it easier to follow and verify. Some problems have been identified, and we suggest possible corrections. (shrink)
The decision-theoretic account of probability in the Everett or many-worlds interpretation, advanced by David Deutsch and David Wallace, is shown to be circular. Talk of probability in Everett presumes the existence of a preferred basis to identify measurement outcomes for the probabilities to range over. But the existence of a preferred basis can only be established by the process of decoherence, which is itself probabilistic.
(a) How to design a nuclear power plant 3. Deutsch/Wallace solution to the practical problem (a) Argue that the rational Everettian agent makes decisions by maximizing expected utility, where the expectation value is an average over branches 4. The semantics of branching - two options..
The decision-theoretic account of probability in the Everett or many-worlds interpretation, advanced by David Deutsch and David Wallace, is shown to be circular. Talk of probability in Everett presumes the existence of a preferred basis to identify measurement outcomes for the probabilities to range over. But the existence of a preferred basis can only be established by the process of decoherence, which is itself probabilistic.
Since the publication of Elga's seminal paper in 2000, the Sleeping Beauty paradox has been the source of much discussion, particularly in this journal. Over the past few decades the Everettian interpretation of quantummechanics 1 has also been much debated. There is an interesting connection between the way these two topics raise issues about subjective probability assignments.This connection is often alluded to, but as far as we know Peter J. Lewis's ‘Quantum Sleeping Beauty’ is the (...) first attempt to examine it explicitly. Lewis claims that the two debates are not independent: to be specific, he argues that accepting the Everettian interpretation of quantummechanics requires you to be a ‘halfer’ about Sleeping Beauty, in opposition to the more widely accepted ‘thirder’ solution.This paper will argue that Lewis is wrong. Everettians do not have to be halfers. It is perfectly cogent to be both an Everettian and a thirder. (shrink)
We argue that the intractable part of the measurement problem -- the 'big' measurement problem -- is a pseudo-problem that depends for its legitimacy on the acceptance of two dogmas. The first dogma is John Bell's assertion that measurement should never be introduced as a primitive process in a fundamental mechanical theory like classical or quantummechanics, but should always be open to a complete analysis, in principle, of how the individual outcomes come about dynamically. The second dogma (...) is the view that the quantum state has an ontological significance analogous to the significance of the classical state as the 'truthmaker' for propositions about the occurrence and non-occurrence of events, i.e., that the quantum state is a representation of physical reality. We show how both dogmas can be rejected in a realist information-theoretic interpretation of quantummechanics as an alternative to the Everett interpretation. The Everettian, too, regards the 'big' measurement problem as a pseudo-problem, because the Everettian rejects the assumption that measurements have definite outcomes, in the sense that one particular outcome, as opposed to other possible outcomes, actually occurs in a quantum measurement process. By contrast with the Everettians, we accept that measurements have definite outcomes. By contrast with the Bohmians and the GRW 'collapse' theorists who add structure to the theory and propose dynamical solutions to the 'big' measurement problem, we take the problem to arise from the failure to see the significance of Hilbert space as a new kinematic framework for the physics of an indeterministic universe, in the sense that Hilbert space imposes kinematic objective probabilistic constraints on correlations between events. (shrink)
If the most familiar overlapping interpretation of Everettianquantummechanics is correct, then each of us is constantly splitting into multiple people. This consequence gives rise to the quantum doomsday argument, which threatens to draw crippling epistemic consequences from EQM. However, a diverging interpretation of EQM undermines the quantum doomsday argument completely. This appears to tell in favour of the diverging interpretation. But it is surprising that a metaphysical question that is apparently underdetermined by the (...) physics should be settled by purely epistemological considerations; and I argue that the positive case for divergence based on the quantum doomsday effect is ultimately unsuccessful. I discuss how some influential treatments of Everettian confirmation handle the quantum doomsday puzzle, and suggest that it can most satisfyingly be resolved via a naturalistic approach to the metaphysics of modality. (shrink)
The subjective Everettian approach to quantummechanics presented by Deutsch and Wallace fails to constitute an empirically viable theory of quantum phenomena. The decision theoretic implementation of the Born rule realized in this approach provides no basis for rejecting Everettianquantummechanics in the face of empirical data that contradicts the Born rule. The approach of Greaves and Myrvold, which provides a subjective implementation of the Born rule as well but derives it from (...) empirical data rather than decision theoretic arguments, avoids the problem faced by Deutsch and Wallace and is empirically viable. However, there is good reason to cast doubts on its scientific value. (shrink)
Proposed derivations of the Born rule for Everettian theory are controversial. I argue that they are unnecessary but may provide justification for a simplified version of the Principal Principle. It’s also unnecessary to replace Everett’s idea that a subject splits in measurement contexts with the idea that subjects have linear histories which partition Many worlds? Everett, quantum theory, and reality, Oxford University Press, Oxford, pp 181–205, 2010; Wallace in The emergent multiverse, Oxford University Press, Oxford, 2012, Chapter 7; (...) Wilson in Br J Philos Sci 64:709–737, 2013; The nature of contingency: quantum physics as modal realism, Oxford University Press, Oxford, forthcoming). Linear histories were introduced to provide a concept of pre-measurement uncertainty and I explain why pre-measurement uncertainty for splitting subjects is after all coherent, though not necessary because Everett’s original fission interpretation of branching can arguably be rendered coherent without it, via reference to Vaidman, Tappenden, Sebens and Carroll and McQueen and Vaidman. A deterministic and probabilistic quantummechanics can be made intelligible by replacing the standard collapse postulate with a no-collapse postulate which identifies objective probability with relative branch weight, supplemented by the simplified Principal Principle and some revisionary metaphysics. (shrink)
I argue that the many worlds explanation of quantum computation is not licensed by, and in fact is conceptually inferior to, the many worlds interpretation of quantummechanics from which it is derived. I argue that the many worlds explanation of quantum computation is incompatible with the recently developed cluster state model of quantum computation. Based on these considerations I conclude that we should reject the many worlds explanation of quantum computation.
This book comprises all of John Bell's published and unpublished papers in the field of quantummechanics, including two papers that appeared after the first edition was published. It also contains a preface written for the first edition, and an introduction by Alain Aspect that puts into context Bell's great contribution to the quantum philosophy debate. One of the leading expositors and interpreters of modern quantum theory, John Bell played a major role in the development of (...) our current understanding of the profound nature of quantum concepts. First edition Hb (1987): 0-521-33495-0 First edition Pb (1988): 0-521-36869-3. (shrink)
I examine the epistemological debate on scientific realism in the context of quantum physics, focusing on the empirical underdetermin- ation of different formulations and interpretations of QM. I will argue that much of the interpretational, metaphysical work on QM tran- scends the kinds of realist commitments that are well-motivated in the light of the history of science. I sketch a way of demarcating empirically well-confirmed aspects of QM from speculative quantum metaphysics in a way that coheres with anti-realist (...) evidence from the history of science. The minimal realist attitude sketched withholds realist com- mitment to what quantum state |Ψ⟩ represents. I argue that such commitment is not required for fulfilling the ultimate realist motiva- tion: accounting for the empirical success of quantummechanics in a way that is in tune with a broader understanding of how theoretical science progresses and latches onto reality. (shrink)
This paper offers a critical assessment of the current state of the debate about the identity and individuality of material objects. Its main aim, in particular, is to show that, in a sense to be carefully specified, the opposition between the Leibnizian ‘reductionist’ tradition, based on discernibility, and the sort of ‘primitivism’ that denies that facts of identity and individuality must be analysable has become outdated. In particular, it is argued that—contrary to a widespread consensus—‘naturalised’ metaphysics supports both the acceptability (...) of non-qualitatively grounded (both ‘contextual’ and intrinsic) identity and a pluralistic approach to individuality and individuation. A case study is offered that focuses on non-relativistic quantummechanics, in the context of which primitivism about identity and individuality, rather than being regarded as unscientific, is on the contrary suggested to be preferable to the complicated forms of reductionism that have recently been proposed. More generally, by assuming a plausible form of anti-reductionism about scientific theories and domains, it is claimed that science can be regarded as compatible with, or even as suggesting, the existence of a series of equally plausible grades of individuality. The kind of individuality that prevails in a certain context and at a given level can be ascertained only on the basis of the specific scientific theory at hand. (shrink)
*A shortened version of this paper will appear in Current Controversies in Philosophy of Science, Dasgupta and Weslake, eds. Routledge.* This paper describes the case that can be made for a high-dimensional ontology in quantummechanics based on the virtues of avoiding both nonseparability and non locality.
This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...) This claim is illustrated by examining how OSR fares with respect to the three main candidates for an ontology of quantummechanics, namely many worlds-type interpretations, collapse-type interpretations and hidden variable-type interpretations. The result is that OSR as such is not sufficient to answer the question of what the world is like if quantummechanics is correct. (shrink)
In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantummechanics...
A recent rethinking of the early history of QuantumMechanics deemed the late 1920s agreement on the equivalence of Matrix Mechanics and Wave Mechanics, prompted by Schrödinger’s 1926 proof, a myth. Schrödinger supposedly failed to achieve the goal of proving isomorphism of the mathematical structures of the two theories, while only later developments in the early 1930s, especially the work of mathematician John von Neumman (1932) provided sound proof of equivalence. The alleged agreement about the Copenhagen (...) Interpretation, predicated to a large extent on this equivalence, was deemed a myth as well. If such analysis is correct, it provides considerable evidence that, in its critical moments, the foundations of scientific practice might not live up to the minimal standards of rigor, as such standards are established in the practice of logic, mathematics, and mathematical physics, thereby prompting one to question the rationality of the practice of physics. In response, I argue that Schrödinger’s proof concerned primarily a domain-specific ontological equivalence, rather than the isomorphism. It stemmed initially from the agreement of the eigenvalues of Wave Mechanics and energy-states of Bohr’s Model that was discovered and published by Schrödinger in his First and Second Communications of 1926. Schrödinger demonstrated in this proof that the laws of motion arrived at by the method of Matrix Mechanics could be derived successfully from eigenfunctions as well (while he only outlined the reversed derivation of eigenfunctions from Matrix Mechanics, which was necessary for the proof of isomorphism of the two theories). This result was intended to demonstrate the domain-specific ontological equivalence of Matrix Mechanics and Wave Mechanics, with respect to the domain of Bohr’s atom. And although the full-fledged mathematico-logical equivalence of the theories did not seem out of the reach of existing theories and methods, Schrödinger never intended to fully explore such a possibility in his proof paper. In a further development of QuantumMechanics, Bohr’s complementarity and Copenhagen Interpretation captured a more substantial convergence of the subsequently revised (in light of the experimental results) Wave and Matrix Mechanics. I argue that both the equivalence and Copenhagen Interpretation can be deemed myths if one predicates the philosophical and historical analysis on a narrow model of physical theory which disregards its historical context, and focuses exclusively on its formal aspects and the exploration of the logical models supposedly implicit in it. (shrink)
In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...) Without Numbers (1980), responds to David Malament’s long-standing impossibility conjecture (1982), and establishes an important first step towards a genuinely intrinsic and nominalistic account of quantummechanics. I will also compare the present account to Mark Balaguer’s (1996) nominalization of quantummechanics and discuss how it might bear on the debate about “wave function realism.” In closing, I will suggest some possible ways to extend this account to accommodate spinorial degrees of freedom and a variable number of particles (e.g. for particle creation and annihilation). -/- Along the way, I axiomatize the quantum phase structure as what I shall call a “periodic difference structure” and prove a representation theorem as well as a uniqueness theorem. These formal results could prove fruitful for further investigation into the metaphysics of phase and theoretical structure. (shrink)
We discuss the ‘Consciousness Causes Collapse Hypothesis’ (CCCH), the interpretation of quantummechanics according to which consciousness solves the measurement problem. At first, it seems that the very hypothesis that consciousness causally acts over matter counts as a reductio of CCCH. However, CCCH won’t go so easily. In this paper we attempt to bring new light to the discussion. We distinguish the ontology of the interpretation (the positing of a causally efficacious consciousness as part of the furniture of (...) reality) from metaphysics (the metaphysical character of that consciousness). That distinction allows us to map the philosophical theories of consciousness compatible with quantummechanics under the tenets of CCCH. Also, it indicates that the problem will have to be discussed at a metaphysical level rather than at the physical level. Our analysis corroborates recent arguments to the effect that this interpretation is not ruled out so easily. (shrink)
It has been argued that the transition from classical to quantummechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue (...) that, in addition to radical quantum paradigms, there are also legitimate ways of understanding the quantum world that do not require any substantial change to the classical paradigm. (shrink)
The paper address the question of whether quantummechanics (QM) favors Priority Monism, the view according to which the Universe is the only fundamental object. It develops formal frameworks to frame rigorously the question of fundamental mereology and its answers, namely (Priority) Pluralism and Monism. It then reconstructs the quantum mechanical argument in favor of the latter and provides a detailed and thorough criticism of it that sheds furthermore new light on the relation between parthood, composition and (...) fundamentality in QM. (shrink)
I argue that quantummechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.
We study the process of observation (measurement), within the framework of a “perspectival” (“relational,” “relative state”) version of the modal interpretation of quantummechanics. We show that if we assume certain features of discreteness and determinism in the operation of the measuring device (which could be a part of the observer's nerve system), this gives rise to classical characteristics of the observed properties, in the first place to spatial localization. We investigate to what extent semi-classical behavior of the (...) object system itself (as opposed to the observational system) is needed for the emergence of classicality. Decoherence is an essential element in the mechanism of observation that we assume, but it turns out that in our approach no environment-induced decoherence on the level of the object system is required for the emergence of classical properties. (shrink)
What is quantummechanics about? The most natural way to interpret quantummechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the (...) wave function evolves in time according to the equations that has his name). The Many-Worlds interpretation1 accepts the existence of such macroscopic superpositions but takes it that they can never be observed. Superposed objects and superposed observers split together in different worlds of the type of the one we appear to live in. For these who, like Schroedinger, think that macroscopic superpositions are a problem, the common wisdom is that there are two alternative views: "Either the wave function, as given by the Schroedinger equation, is not everything, or is not right" [Bell 1987]. The deBroglie-Bohm theory, now commonly known as Bohmian Mechanics, takes the first option: the description provided by a Schroedinger-evolving wave function is supplemented by the information provided by the configuration of the particles. The second possibility consists in assuming that, while the wave function provides the complete description of the system, its temporal evolution is not given by the Schroedinger equation. Rather, the usual Schroedinger evolution is interrupted by random and sudden "collapses". The most promising theory of this kind is the GRW theory, named after the scientists that developed it: Gian Carlo Ghirardi, Alberto Rimini and Tullio Weber.. It seems tempting to think that in GRW we can take the wave function ontologically seriously and avoid the problem of macroscopic superpositions just allowing for quantum jumps. In this paper we will argue that such "bare" wave function ontology is not possible, neither for GRW nor for any other quantum theory: quantummechanics cannot be about the wave function simpliciter. That is, we need more structure than the one provided by the wave function. As a response, quantum theories about the wave function can be supplemented with structure, without taking it as an additional ontology. We argue in reply that such "dressed-up" versions of wave function ontology are not sensible, since they compromise the acceptability of the theory as a satisfactory fundamental physical theory. Therefore we maintain that: 1- Strictly speaking, it is not possible to interpret quantum theories as theories about the wave function; 2- Even if the wave function is supplemented by additional non-ontological structures, there are reasons not to take the resulting theory seriously. Moreover, we will argue that any of the traditional responses to the measurement problem of quantummechanics (Bohmian mechanics, GRW and Many-Worlds), contrarily to what commonly believed, share a common structure. That is, we maintain that: 3- All quantum theories should be regarded as theories in which physical objects are constituted by a primitive ontology. The primitive ontology is mathematically represented in the theory by a mathematical entity in three-dimensional space, or space-time. (shrink)
We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantummechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...) relativity and nonlocal effects predicted by quantummechanics. Our discussion applies in particular to Bohmian mechanics. (shrink)
A time-symmetric formulation of nonrelativistic quantummechanics is developed by applying two consecutive boundary conditions onto solutions of a time- symmetrized wave equation. From known probabilities in ordinary quantummechanics, a time-symmetric parameter P0 is then derived that properly weights the likelihood of any complete sequence of measurement outcomes on a quantum system. The results appear to match standard quantummechanics, but do so without requiring a time-asymmetric collapse of the wavefunction upon measurement, (...) thereby realigning quantummechanics with an important fundamental symmetry. (shrink)
The theory of causal Bayes nets [15, 19] is, from an empirical point of view, currently one of the most promising approaches to causation on the market. There are, however, counterexamples to its core axiom, the causal Markov condition. Probably the most serious of these counterexamples are EPR/B experiments in quantummechanics (cf. [13, 23]). However, these are also the only counterexamples yet known from the quantum realm. One might therefore wonder whether they are the only phenomena (...) in the quantum realm that create problems for causal Bayes nets. The aim of this paper is to demonstrate that not only the phenomenon of quantum correlations in EPR/B experiments create problems for causal Bayes nets, but also the temporal evolution of quantum systems, which is described as dualistic by quantummechanics. For this purpose, it is shown that single photon experiments in a Mach-Zehnder interferometer (MZI) violate the causal Markov condition as well. It is then argued, however, that the Markov violation does not occur under the de Broglie-Bohm interpretation of Bohmian mechanics. (shrink)
This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantummechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...) calculus. The previous attempts all required the brackets to take values in ℤ₂. But the usual QM brackets <ψ|ϕ> give the "overlap" between states ψ and ϕ, so for subsets S,T⊆U, the natural definition is <S|T>=|S∩T| (taking values in the natural numbers). This allows QM/sets to be developed with a full probability calculus that turns out to be a non-commutative extension of classical Laplace-Boole finite probability theory. The pedagogical model is illustrated by giving simple treatments of the indeterminacy principle, the double-slit experiment, Bell's Theorem, and identical particles in QM/Sets. A more technical appendix explains the mathematics behind carrying some vector space structures between QM over ℂ and QM/Sets over ℤ₂. (shrink)
A common understanding of quantummechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of (...) relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research. (shrink)
Definitions I presented in a previous article as part of a semantic approach in epistemology assumed that the concept of derivability from standard logic held across all mathematical and scientific disciplines. The present article argues that this assumption is not true for quantummechanics (QM) by showing that concepts of validity applicable to proofs in mathematics and in classical mechanics are inapplicable to proofs in QM. Because semantic epistemology must include this important theory, revision is necessary. The (...) one I propose also extends semantic epistemology beyond the ‘hard’ sciences. The article ends by presenting and then refuting some responses QM theorists might make to my arguments. (shrink)
In order to tackle the question posed by the title – notoriously answered in the positive, among others, by Heisenberg, Margenau, Popper and Redhead – I first discuss some attempts at distinguishing dispositional from non-dispositional properties, and then relate the distinction to the formalism of quantummechanics. Since any answer to the question titling the paper must be interpretation-dependent, I review some of the main interpretations of quantummechanics in order to argue that the ontology of (...) theories regarding “wave collapse” as a genuine physical process could be interpreted as being irreducibly dispositional. In non-collapse interpretations, on the contrary, the appeal to dispositions is simply a way to reformulate the predictive content of the algorithm of the theory in a fancier metaphysical language. (shrink)
Time has multiple aspects and is difficult to define as one unique entity, which therefore led to multiple interpretations in physics and philosophy. However, if the perception of time is considered as a composite time concept, it can be decomposed into basic invariable components for the perception of progressive and support-fixed time and into secondary components with possible association to unit-defined time or tense. Progressive time corresponds to Bergson’s definition of duration without boundaries, which cannot be divided for measurements. Time (...) periods are already lying in the past and fixed on different kinds of support. The human memory is the first automatic support, but any other support suitable for time registration can also be considered. The true reproduction of original time from any support requires conditions identical to the initial conditions, if not time reproduction becomes artificially modified as can be seen with a film. Time reproduction can be artificially accelerated, slowed down, extended or diminished, and also inverted from the present to the past, which only depends on the manipulation of the support, to which time is firmly linked. Tense associated to progressive and support fixed time is a psychological property directly dependent on an observer, who judges his present as immediate, his past as finished and his future as uncertain. Events can be secondarily associated to the tenses of an observer. Unit-defined time is essential for physics and normal live and is obtained by comparison of support-fixed time to systems with regular motions, like clocks. The association of time perception to time units can also be broken. Einstein’s time units became relative, in quantummechanics, some physicist eliminated time units, others maintained them. Nevertheless, even the complete elimination of time units is not identical to timelessness, since the psychological perception of progressive and support-fixed time still remains and cannot be ignored. It is not seizable by physical methods, but experienced by everybody in everyday life. Contemporary physics can only abandon the association of time units or tenses to the basic components in perceived time. (shrink)
Carlo Rovelli's relational interpretation of quantummechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call the (...) ‘determinacy problem', but Barrett misclassifies Rovelli's interpretation by lumping it in with Mermin's view, as Rovelli's view is quite different and has resources to escape the particular criticisms that Barrett makes of Mermin's view. Rovelli's interpretation still leaves us with a paradox having to do with the determinacy of measurement outcomes, which can be accepted only if we are willing to give up on certain elements of the ‘absolute’ view of the world. (shrink)