7 found
Farmer Schlutzenberg [5]F. Schlutzenberg [2]
  1.  14
    Determinacy and Jónsson Cardinals in L.S. Jackson, R. Ketchersid, F. Schlutzenberg & W. H. Woodin - 2014 - Journal of Symbolic Logic 79 (4):1184-1198.
    Assume ZF + AD +V=L and letκ< Θ be an uncountable cardinal. We show thatκis Jónsson, and that if cof = ω thenκis Rowbottom. We also establish some other partition properties.
    Direct download (3 more)  
    Export citation  
    Bookmark   3 citations  
  2.  8
    Iterability for (Transfinite) Stacks.Farmer Schlutzenberg - 2021 - Journal of Mathematical Logic 21 (2):2150008.
    We establish natural criteria under which normally iterable premice are iterable for stacks of normal trees. Let Ω be a regular uncountable cardinal. Let m < ω and M be an m-sound premouse and Σ be...
    Direct download (2 more)  
    Export citation  
  3.  2
    Reinhardt Cardinals and Iterates of V.Farmer Schlutzenberg - 2022 - Annals of Pure and Applied Logic 173 (2):103056.
  4.  5
    A Premouse Inheriting Strong Cardinals From V.Farmer Schlutzenberg - 2020 - Annals of Pure and Applied Logic 171 (9):102826.
  5.  21
    Homogeneously Suslin Sets in Tame Mice.Farmer Schlutzenberg - 2012 - Journal of Symbolic Logic 77 (4):1122-1146.
    This paper studies homogeneously Suslin (hom) sets of reals in tame mice. The following results are established: In 0 ¶ the hom sets are precisely the [Symbol] sets. In M n every hom set is correctly [Symbol] and (δ + 1)-universally Baire where ä is the least Woodin. In M u every hom set is <λ-hom, where λ is the supremum of the Woodins.
    Direct download (7 more)  
    Export citation  
  6.  9
    Comparison of Fine Structural Mice Via Coarse Iteration.F. Schlutzenberg & J. R. Steel - 2014 - Archive for Mathematical Logic 53 (5-6):539-559.
    Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} be a fine structural mouse. Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document} be a fully backgrounded L[E]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L[\mathbb{E}]}$$\end{document}-construction computed inside an iterable coarse premouse S. We describe a process comparing M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} with D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document}, through forming iteration trees on M\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    No categories
    Direct download (6 more)  
    Export citation  
  7.  3
    A Long Pseudo-Comparison of Premice in L[X].Farmer Schlutzenberg - 2018 - Notre Dame Journal of Formal Logic 59 (4):599-604.
    A significant open problem in inner model theory is the analysis of HODL[x] as a strategy premouse, for a Turing cone of reals x. We describe here an obstacle to such an analysis. Assuming sufficient large cardinals, for a Turing cone of reals x there are proper class 1-small premice M,N, with Woodin cardinals δ,ε, respectively, such that M|δ and N|ε are in L[x], M and N are countable in L[x], and the pseudo-comparison of M with N succeeds, is in (...)
    Direct download (3 more)  
    Export citation