In arithmetic, if only because many of its methods and concepts originated in India, it has been the tradition to reason less strictly than in geometry, ...
Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens / von Dr. Gottlob Frege,...Date de l'edition originale : 1879Ce livre est la reproduction fidele d'une oeuvre publiee avant 1920 et fait partie d'une collection de livres reimprimes a la demande editee par Hachette Livre, dans le cadre d'un partenariat avec la Bibliotheque nationale de France, offrant l'opportunite d'acceder a des ouvrages anciens et souvent rares issus des fonds patrimoniaux de la BnF.Les oeuvres faisant partie de cette collection ont ete numerisees (...) par la BnF et sont presentes sur Gallica, sa bibliotheque numerique.En entreprenant de redonner vie a ces ouvrages au travers d'une collection de livres reimprimes a la demande, nous leur donnons la possibilite de rencontrer un public elargi et participons a la transmission de connaissances et de savoirs parfois difficilement accessibles.Nous avons cherche a concilier la reproduction fidele d'un livre ancien a partir de sa version numerisee avec le souci d'un confort de lecture optimal. Nous esperons que les ouvrages de cette nouvelle collection vous apporteront entiere satisfaction.Pour plus d'informations, rendez-vous sur www.hachettebnf.frhttp://gallica.bnf.fr/ark:/12148/bpt6k65658c. (shrink)
Die Grundlagen gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen. Studienausgabe aufgrund der textkritisch herausgegebenen Jubiläumsausgabe (Centenarausgabe). Mit Einleitung, Anmerkungen, Literaturverzeichnis und Namenregister.
Die "Grundlagen" gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen.
This is the first single-volume edition and translation of Frege's philosophical writings to include his seminal papers as well as substantial selections from ...
Equality1 gives rise to challenging questions which are not altogether easy to answer. Is it a relation? A relation between objects, or between names or signs of objects? In my Begriffsschrift I assumed the latter. The reasons which seem to favour this are the following: a = a and a = b are obviously statements of differing cognitive value; a = a holds a priori and, according to Kant, is to be labeled analytic, while statements of the form a = (...) b often contain very valuable extensions of our knowledge and cannot always be established a priori. The discovery that the rising sun is not new every morning, but always the same, was one of the most fertile astronomical discoveries. Even to-day the identification of a small planet or a comet is not always a matter of course. Now if we were to regard equality as a relation between that which the names ‘a’ and ‘b’ designate, it would seem that a = b could not differ from a = a (i.e. provided a = b is true). A relation would thereby be expressed of a thing to itself, and indeed one in which each thing stands to itself but to no other thing. What is intended to be said by a = b seems to be that the signs or names ‘a’ and ‘b’ designate the same thing, so that those signs themselves would be under discussion; a relation between them would be asserted. But this relation would hold between the names or signs only in so far as they named or designated something. It would be mediated by the connexion of each of the two signs with the same designated thing. But this is arbitrary. Nobody can be forbidden to use any arbitrarily producible event or object as a sign for something. In that case the sentence a = b would no longer refer to the subject matter, but only to its mode of designation; we would express no proper knowledge by its means. But in many cases this is just what we want to do. If the sign ‘a’ is distinguished from the sign ‘b’ only as object (here, by means of its shape), not as sign (i.e. not by the manner in which it designates something), the cognitive value of a = a becomes essentially equal to that of a = b, provided a = b is true.. (shrink)
§ i. After deserting for a time the old Euclidean standards of rigour, mathematics is now returning to them, and even making efforts to go beyond them. ...
... as 'logicism') that the content expressed by true propositions of arithmetic and analysis is not something of an irreducibly mathematical character, ...
Dieser Band enthält die vier Arbeiten Freges: Begriffsschrift, eine der arithmetischen nachgebildeten Formelsprache, 1879; Anwendungen der Begriffsschrift, 1879; Über den Briefwechsel Leibnizens und Huggens mit Papin, 1881; Über den Zweck der Begriffsschrift, 1883; Über die wissenschaftliche Berechtigung einer Begriffsschrift, 1882. Frege's research work in the field of mathematical logic is of great importance for the present-day analytic philosophy. We actually owe to Frege a great amount of basical insight and exemplary research, which set up a new standard also in other (...) fields of knowledge. As the founder of mathematical logic he severely examindes the syllogisms on which arithmetic is built up. In doing so, Frege recognized that our colloquial language is inadequate to define logic structures. His notional language corresponded to the artaivicial logical language demandes by Leibniz. Frege's achievement in the field of logic were so important, that they radiated into the domain of philosophy and influenced the development of mathematical logic decisively. (shrink)
This volume contains English translations of Frege's early writings in logic and philosophy and of relevant reviews by other leading logicians. Professor Bynum has contributed a biographical essay, introduction, and extensive bibliography.
This volume contains all of Frege's extant unpublished writings on philosophy and logic other than his correspondence, written at various stages of his career.