Results for 'G. G. Simpson'

1000+ found
Order:
  1.  13
    The Α-Finite Injury Method.G. E. Sacks & S. G. Simpson - 1972 - Annals of Mathematical Logic 4 (4):343-367.
  2.  17
    Anti-Theory in Ethics and Moral Conservatism.Stanley G. Clarke & Evan Simpson (eds.) - 1989 - State University of New York Press.
    "This is a timely collection of important papers.
    Direct download  
     
    Export citation  
     
    Bookmark   13 citations  
  3.  6
    A Degree-Theoretic Definition of the Ramified Analytical Hierarchy.Carl G. Jockusch & Stephen G. Simpson - 1976 - Annals of Mathematical Logic 10 (1):1-32.
  4. Medieval English Religious and Ethical Literature Essays in Honour of G.H. Russell.G. H. Russell, G. C. Kratzmann & James Simpson - 1986
     
    Export citation  
     
    Bookmark   1 citation  
  5. Aging-Attentional Allocation and Fluctuation in Visual Word Recognition.G. Kellas, G. B. Simpson & Fr Ferraro - 1987 - Bulletin of the Psychonomic Society 25 (5):336-336.
     
    Export citation  
     
    Bookmark  
  6.  78
    Stephen G. Simpson Subsystems of Second-Order Arithmetic.Jeffrey Ketland - 2001 - British Journal for the Philosophy of Science 52 (1):191-195.
  7.  24
    Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin, Heidelberg, New York, Etc., 1999, Xiv + 445 Pp. [REVIEW]Peter Cholak - 1999 - Journal of Symbolic Logic 64 (3):1356-1357.
  8.  12
    Harvey M. Friedman, Stephen G. Simpson, and Rick L. Smith. Countable Algebra and Set Existence Axioms. Annals of Pure and Applied Logic, Vol. 25 , Pp. 141–181. - Harvey M. Friedman, Stephen G. Simpson, and Rick L. Smith. Addendum to “Countable Algebra and Set Existence Axioms.” Annals of Pure and Applied Logic, Vol. 28 , Pp. 319–320. [REVIEW]Peter G. Clote - 1987 - Journal of Symbolic Logic 52 (1):276-278.
  9.  15
    Stephen G. Simpson. Nonprovability of Certain Combinatorial Properties of Finite Trees. Harvey Friedman's Research on the Foundations of Mathematics, Edited by L. A. Harrington, M. D. Morley, A. Ṧčedrov, and S. G. Simpson, Studies in Logic and the Foundations of Mathematics, Vol. 117, North-Holland, Amsterdam, New York, and Oxford, 1985, Pp. 87–117. , Pp. 45–65.). [REVIEW]W. Buchholz - 1990 - Journal of Symbolic Logic 55 (2):868-869.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10. STEVEN G. SIMPSON. Subsystems of Second Order Arithmetic.Jp Burgess - 2000 - Philosophia Mathematica 8 (1):84-90.
     
    Export citation  
     
    Bookmark  
  11.  2
    The Origin of Races by Carleton S. Coon.G. G. Simpson - 1963 - Perspectives in Biology and Medicine 6 (2):268-272.
  12. Failure to Maintain Equivalence of Groups in Cognitive Research-Dual Task.Fr Ferraro, G. Kellas & Gb Simpson - 1990 - Bulletin of the Psychonomic Society 28 (6):516-516.
  13.  4
    Review: Stephen G. Simpson, Subsystems of Second Order Arithmetic. [REVIEW]Peter Cholak - 1999 - Journal of Symbolic Logic 64 (3):1356-1357.
  14.  11
    Cultural Safety, Diversity and the Servicer User and Carer Movement in Mental Health Research.Leonie G. Cox & Alan Simpson - 2015 - Nursing Inquiry 22 (4):306-316.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15.  18
    Stephen G. Simpson. Friedman's Research on Subsystems of Second Order Arithmetic. Harvey Friedman's Research on the Foundations of Mathematics, Edited by L. A. Harrington, M. D. Morley, A. S̆c̆edrov, and S. G. Simpson, Studies in Logic and the Foundations of Mathematics, Vol. 117, North-Holland, Amsterdam, New York, and Oxford, 1985, Pp. 137–159. [REVIEW]Wilfried Sieg - 1990 - Journal of Symbolic Logic 55 (2):870-874.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  3
    Review: Stephen G. Simpson, Nonprovability of Certain Combinatorial Properties of Finite Trees. [REVIEW]W. Buchholz - 1990 - Journal of Symbolic Logic 55 (2):868-869.
  17.  41
    Review: Stephen G. Simpson, Friedman's Research on Subsystems of Second Order Arithmetic. [REVIEW]Wilfried Sieg - 1990 - Journal of Symbolic Logic 55 (2):870-874.
  18. Review: Harvey M. Friedman, Stephen G. Simpson, Rick L. Smith, Countable Algebra and Set Existence Axioms; Harvey M. Friedman, Stephen G. Simpson, Rick L. Smith, Addendum to "Countable Algebra and Set Existence Axioms.". [REVIEW]Peter G. Clote - 1987 - Journal of Symbolic Logic 52 (1):276-278.
  19.  27
    Factorization of Polynomials and °1 Induction.S. G. Simpson - 1986 - Annals of Pure and Applied Logic 31:289.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  20.  21
    Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Direct download  
     
    Export citation  
     
    Bookmark   106 citations  
  21.  17
    Angus Macintyre. Ramsey Quantifiers in Arithmetic. Model Theory of Algebra and Arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic Held at Karpacz, Poland, September 1–7, 1979, Edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture Notes in Mathematics, Vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, Pp. 186–210. - James H. Schmerl and Stephen G. Simpson. On the Role of Ramsey Quantifiers in First Order Arithmetic. The Journal of Symbolic Logic, Vol. 47 , Pp. 423–435. - Carl Morgenstern. On Generalized Quantifiers in Arithmetic. The Journal of Symbolic Logic, Vol. 47 , Pp. 187–190. [REVIEW]L. A. S. Kirby - 1985 - Journal of Symbolic Logic 50 (4):1078-1079.
  22.  7
    Review: Angus Macintyre, L. Pacholski, J. Wierzejewski, A. J. Wilkie, Ramsey Quantifiers in Arithmetic; James H. Schmerl, Stephen G. Simpson, On the Role of Ramsey Quantifiers in First Order Arithmetic; Carl Morgenstern, On Generalized Quantifiers in Arithmetic. [REVIEW]L. A. S. Kirby - 1985 - Journal of Symbolic Logic 50 (4):1078-1079.
  23.  61
    J. C. Shepherdson. Algorithmic Procedures, Generalized Turing Algorithms, and Elementary Recursion Theory. Harvey Friedman's Research on the Foundations of Mathematics, Edited by L. A. Harrington, M. D. Morley, A. S̆c̆edrov, and S. G. Simpson, Studies in Logic and the Foundations of Mathematics, Vol. 117, North-Holland, Amsterdam, New York, and Oxford, 1985, Pp. 285–308. - J. C. Shepherdson. Computational Complexity of Real Functions. Harvey Friedman's Research on the Foundations of Mathematics, Edited by L. A. Harrington, M. D. Morley, A. S̆c̆edrov, and S. G. Simpson, Studies in Logic and the Foundations of Mathematics, Vol. 117, North-Holland, Amsterdam, New York, and Oxford, 1985, Pp. 309–315. - A. J. Kfoury. The Pebble Game and Logics of Programs. Harvey Friedman's Research on the Foundations of Mathematics, Edited by L. A. Harrington, M. D. Morley, A. S̆c̆edrov, and S. G. Simpson, Studies in Logic and the Foundations of Mathematics, Vol. 117, North-Holland, Amsterdam, New York, An. [REVIEW]J. V. Tucker - 1990 - Journal of Symbolic Logic 55 (2):876-878.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24.  29
    Cynthia J. Neville and Grant G. Simpson, Eds., Regesta Regum Scottorum, Vol. 4, Part 1: The Acts of Alexander III 1249–1286. Edinburgh: Edinburgh University Press, 2012, Reprinted with Corrections, 2013. Pp. Xii, 276; 1 Map. $192. ISBN: 978-0-7486-2732-5. [REVIEW]Alice Taylor - 2015 - Speculum 90 (2):569-570.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25.  13
    Logic and Computation, Proceedings of a Workshop Held at Carnegie Mellon University, June 30–July 2, 1987, Edited by Wilfried Sieg, Contemporary Mathematics, Vol. 106, American Mathematical Society, Providence1990, Xiv + 297 Pp. - Douglas K. Brown. Notions of Closed Subsets of a Complete Separable Metric Space in Weak Subsystems of Second Order Arithmetic. Pp. 39–50. - Kostas Hatzikiriakou and Stephen G. Simpson. WKL0 and Orderings of Countable Abelian Groups. Pp. 177–180. - Jeffry L. Hirst. Marriage Theorems and Reverse Mathematics. Pp. 181–196. - Xiaokang Yu. Radon–Nikodym Theorem is Equivalent to Arithmetical Comprehension. Pp. 289–297. - Fernando Ferreira. Polynomial Time Computable Arithmetic. Pp. 137–156. - Wilfried Buchholz and Wilfried Sieg. A Note on Polynomial Time Computable Arithmetic. Pp. 51–55. - Samuel R. Buss. Axiomatizations and Conservation Results for Fragments of Bounded Arithmetic. Pp. 57–84. - Gaisi Takeuti. Sharply Bounded Arithmetic and the Function a – 1. Pp. 2. [REVIEW]Jörg Hudelmaier - 1996 - Journal of Symbolic Logic 61 (2):697-699.
  26.  5
    Solomon Feferman, Charles Parsons, and Steven G. Simpson, Eds.: Kurt Gödel: Essays for His Centennial.Paolo Mancosu - 2011 - Journal of Philosophy 108 (11):642-646.
  27.  20
    Charles Steinhorn. Borel Structures for First-Order and Extended Logics. Harvey Friedman's Research on the Foundations of Mathematics, Edited by L. A. Harrington, M. D. Morley, A. S̆c̆edrov, and S. G. Simpson, Studies in Logic and the Foundations of Mathematics, Vol. 117, North-Holland, Amsterdam, New York, and Oxford, 1985, Pp. 161–178. [REVIEW]David Marker - 1990 - Journal of Symbolic Logic 55 (2):874-875.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28.  16
    Mass Problems and Intuitionism.Stephen G. Simpson - 2008 - Notre Dame Journal of Formal Logic 49 (2):127-136.
    Let $\mathcal{P}_w$ be the lattice of Muchnik degrees of nonempty $\Pi^0_1$ subsets of $2^\omega$. The lattice $\mathcal{P}$ has been studied extensively in previous publications. In this note we prove that the lattice $\mathcal{P}$ is not Brouwerian.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  29.  28
    Almost Everywhere Domination and Superhighness.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):462-482.
    Let ω be the set of natural numbers. For functions f, g: ω → ω, we say f is dominated by g if f < g for all but finitely many n ∈ ω. We consider the standard “fair coin” probability measure on the space 2ω of in-finite sequences of 0's and 1's. A Turing oracle B is said to be almost everywhere dominating if, for measure 1 many X ∈ 2ω, each function which is Turing computable from X is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  30.  19
    Gaisi Takeuti. Proof Theory. Studies in Logic and the Foundations of Mathematics, Vol. 81. North-Holland Publishing Company, Amsterdam and Oxford, and American Elsevier Publishing Company, New York, 1975, Vii + 372 Pp. - Gaisi Takeuti. Proof Theory. Second Edition of the Preceding. Studies in Logic and the Foundations of Mathematics, Vol. 81. North-Holland, Amsterdam Etc. 1987, X + 490 Pp. - Georg Kreisel. Proof Theory: Some Personal Recollections. Therein, Pp. 395–405. - Wolfram Pohlers. Contributions of the Schütte School in Munich to Proof Theory. Therein, Pp. 406–431. - Stephen G. Simpson. Subsystems of Z2 and Reverse Mathematics. Therein, Pp. 432–446. - Soloman Feferman. Proof Theory: A Personal Report. Therein, Pp. 447–485. [REVIEW]Dag Prawitz - 1991 - Journal of Symbolic Logic 56 (3):1094.
  31.  30
    C. Smoryński. Nonstandard Models and Related Developments. Harvey Friedman's Research on the Foundations of Mathematics, Edited by L. A. Harrington, M. D. Morley, A. S̆c̆edrov, and S. G. Simpson, Studies in Logic and the Foundations of Mathematics, Vol. 117, North-Holland, Amsterdam, New York, and Oxford, 1985, Pp. 179–229. [REVIEW]C. Dimitracopoulos - 1990 - Journal of Symbolic Logic 55 (2):875-876.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32.  26
    Book Review Section 2. [REVIEW]Ronald E. Benson, Herold S. Stern, Richard T. Ryan, Cheryl G. Kasson, Douglas J. Simpson, David Slive, Joe L. Green, Todd Holder, Deno G. Thevaos, Karilee Watson, Cynthia Porter Gehrie, W. Ross Palmer, C. H. Edson, Linda Fystrom & Robert S. Griffin - 1980 - Educational Studies 11 (1):91-115.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33. Leo Strauss, Education, and Political Thought.Shadia B. Drury, Jon Fennell, Tim McDonough, Heinrich Meier, Neil G. Robertson, Timothy L. Simpson, J. G. York, Catherine H. Zuckert & Michael Zuckert (eds.) - 2011 - Fairleigh Dickinson University Press.
    This collection by some of the leading scholars of Strauss's work is the first devoted to Strauss's thought regarding education. It seeks to address his conception of education as it applies to a range of his most important concepts, such as his views on the importance of revelation, his critique of modern democracy and the importance of modern classical education.
     
    Export citation  
     
    Bookmark  
  34.  26
    Book Review Section 2. [REVIEW]Randy J. Dunn, Jeffrey Glanz, Harvey G. Neufeldt, Douglas Simpson, Barry Kanpol, David Leo-Nyquist, Robert J. Mulvaney, Stephen D. Short, Scott Walter, Donald Vandenberg & Richard A. Brosio - 1995 - Educational Studies 26 (1-2):60-119.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  35.  12
    L. A. Harrington, M. D. Morley, A. S̆c̆edrov, and S. G. Simpson. Introduction. Harvey Friedman's Research on the Foundations of Mathematics, Edited by L. A. Harrington, M. D. Morley, A. Ščedrov, and S. G. Simpson, Studies in Logic and the Foundations of Mathematics, Vol. 117, North-Holland, Amsterdam, New York, and Oxford, 1985, Pp. Vii–Xii. [REVIEW]H. B. Enderton - 1990 - Journal of Symbolic Logic 55 (2):867-868.
  36.  4
    Review: L. A. Harrington, M. D. Morley, A. Scedrov, S. G. Simpson, Introduction. [REVIEW]H. B. Enderton - 1990 - Journal of Symbolic Logic 55 (2):867-868.
  37.  4
    Kurt Gödel. Essays for His Centennial, Edited by Solomon Feferman, Charles Parsons, and Stephen G. Simpson, Cambridge University Press, Cambridge and Others, 2010, X + 373 Pp. [REVIEW]Matthias Wille - 2011 - Bulletin of Symbolic Logic 17 (1):125-126.
  38. Partial Realizations of Hilbert's Program.Stephen G. Simpson - 1988 - Journal of Symbolic Logic 53 (2):349-363.
  39. Mass Problems and Randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  40.  7
    Psychological Consequences of Social Isolation During COVID-19 Outbreak.Giada Pietrabissa & Susan G. Simpson - 2020 - Frontiers in Psychology 11.
  41.  24
    Measure Theory and Weak König's Lemma.Xiaokang Yu & Stephen G. Simpson - 1990 - Archive for Mathematical Logic 30 (3):171-180.
    We develop measure theory in the context of subsystems of second order arithmetic with restricted induction. We introduce a combinatorial principleWWKL (weak-weak König's lemma) and prove that it is strictly weaker thanWKL (weak König's lemma). We show thatWWKL is equivalent to a formal version of the statement that Lebesgue measure is countably additive on open sets. We also show thatWWKL is equivalent to a formal version of the statement that any Borel measure on a compact metric space is countably additive (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  42.  36
    Which Set Existence Axioms Are Needed to Prove the Cauchy/Peano Theorem for Ordinary Differential Equations?Stephen G. Simpson - 1984 - Journal of Symbolic Logic 49 (3):783-802.
    We investigate the provability or nonprovability of certain ordinary mathematical theorems within certain weak subsystems of second order arithmetic. Specifically, we consider the Cauchy/Peano existence theorem for solutions of ordinary differential equations, in the context of the formal system RCA 0 whose principal axioms are ▵ 0 1 comprehension and Σ 0 1 induction. Our main result is that, over RCA 0 , the Cauchy/Peano Theorem is provably equivalent to weak Konig's lemma, i.e. the statement that every infinite {0, 1}-tree (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   35 citations  
  43.  37
    Mass Problems and Hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  44.  26
    Which Set Existence Axioms Are Needed to Prove the Separable Hahn-Banach Theorem?Douglas K. Brown & Stephen G. Simpson - 1986 - Annals of Pure and Applied Logic 31:123-144.
  45.  33
    Reverse Mathematics and Peano Categoricity.Stephen G. Simpson & Keita Yokoyama - 2013 - Annals of Pure and Applied Logic 164 (3):284-293.
    We investigate the reverse-mathematical status of several theorems to the effect that the natural number system is second-order categorical. One of our results is as follows. Define a system to be a triple A,i,f such that A is a set and i∈A and f:A→A. A subset X⊆A is said to be inductive if i∈X and ∀a ∈X). The system A,i,f is said to be inductive if the only inductive subset of A is A itself. Define a Peano system to be (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  46.  29
    Embeddings Into the Medvedev and Muchnik Lattices of Π0 1 Classes.Stephen Binns & Stephen G. Simpson - 2004 - Archive for Mathematical Logic 43 (3):399-414.
    Let w and M be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π1 0 subsets of 2ω, under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of w . We show that many countable distributive lattices are lattice-embeddable below any non-zero element of M.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  47.  17
    Factorial Structure and Preliminary Validation of the Schema Mode Inventory for Eating Disorders.Susan G. Simpson, Giada Pietrabissa, Alessandro Rossi, Tahnee Seychell, Gian Mauro Manzoni, Calum Munro, Julian B. Nesci & Gianluca Castelnuovo - 2018 - Frontiers in Psychology 9.
  48. Reverse Mathematics and Π21 Comprehension.Carl Mummert & Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (4):526-533.
    We initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π2 1 comprehension. An MF space is defined to be a topological space of the form MF(P) with the topology generated by $\lbrace N_p \mid p \in P \rbrace$ . Here P is a poset, MF(P) is the set of maximal filters on P, and $N_p = \lbrace F \in MF(P) \mid p \in F \rbrace$ . If the poset P is countable, (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  49.  22
    Located Sets and Reverse Mathematics.Mariagnese Giusto & Stephen G. Simpson - 2000 - Journal of Symbolic Logic 65 (3):1451-1480.
    Let X be a compact metric space. A closed set K $\subseteq$ X is located if the distance function d(x, K) exists as a continuous real-valued function on X; weakly located if the predicate d(x, K) $>$ r is Σ 0 1 allowing parameters. The purpose of this paper is to explore the concepts of located and weakly located subsets of a compact separable metric space in the context of subsystems of second order arithmetic such as RCA 0 , WKL (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  50.  20
    On the Strength of König's Duality Theorem for Countable Bipartite Graphs.Stephen G. Simpson - 1994 - Journal of Symbolic Logic 59 (1):113-123.
    Let CKDT be the assertion that for every countably infinite bipartite graph G, there exist a vertex covering C of G and a matching M in G such that C consists of exactly one vertex from each edge in M. (This is a theorem of Podewski and Steffens [12].) Let ATR0 be the subsystem of second-order arithmetic with arithmetical transfinite recursion and restricted induction. Let RCA0 be the subsystem of second-order arithmetic with recursive comprehension and restricted induction. We show that (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   9 citations  
1 — 50 / 1000