ABSTRACTA conditional is natural if it fulfils the three following conditions. It coincides with the classical conditional when restricted to the classical values T and F; it satisfies the Modus Ponens; and it is assigned a designated value whenever the value assigned to its antecedent is less than or equal to the value assigned to its consequent. The aim of this paper is to provide a ‘bivalent’ Belnap-Dunn semantics for all natural implicative expansions of Kleene's strong 3-valued matrix with two (...) designated elements. (shrink)
Routley-Meyer Ternary Relational Semantics for Intuitionistic-type Negations examines how to introduce intuitionistic-type negations into RM-semantics. RM-semantics is highly malleable and capable of modeling families of logics which are very different from each other. This semantics was introduced in the early 1970s, and was devised for interpreting relevance logics. In RM-semantics, negation is interpreted by means of the Routley operator, which has been almost exclusively used for modeling De Morgan negations. This book provides research on particular features of intuitionistic-type of negations (...) in RM-semantics, while also defining the basic systems and many of their extensions by using models with or without a set of designated points. (shrink)
As is well known, the variable-sharing property (vsp) is, according to Anderson and Belnap, a necessary property of any relevant logic. In this paper, we shall consider two versions of the vsp, what we label the "weak vsp" (wvsp) and the "strong vsp" (svsp). In addition, the "no loose pieces property," a property related to the wvsp and the svsp, will be defined. Each one of these properties shall generally be characterized by means of a class of logical matrices. In (...) this way, any logic verified by an actual matrix in one of these classes has the property the class generally represents. Particular matrices (and so, logics) in each class are provided. (shrink)
A simple Henkin-style completeness proof for Gödel 3-valued propositional logic G3 is provided. The idea is to endow G3 with an under-determined semantics of the type defined by Dunn. The key concept in u-semantics is that of “under-determined interpretation”. It is shown that consistent prime theories built upon G3 can be understood as u-interpretations. In order to prove this fact we follow Brady by defining G3 as an extension of Anderson and Belnap’s positive fragment of First Degree Entailment Logic.
This paper is a sequel to ‘Belnap-Dunn semantics for natural implicative expansions of Kleene's strong three-valued matrix with two designated values’, where a ‘bivalent’ Belnap-Dunn semantics is provided for all the expansions referred to in its title. The aim of the present paper is to carry out a parallel investigation for all natural implicative expansions of Kleene's strong 3-valued matrix now with only one designated value.
We consider the logics determined by the set of all natural implicative expansions of Kleene’s strong 3-valued matrix and select the class of all logics functionally equivalent to Łukasiewicz’s 3-valued logic Ł3. The concept of a “natural implicative matrix” is based upon the notion of a “natural conditional” defined in Tomova.
Routley-Meyer type ternary relational semantics are defined for relevant logics including Routley and Meyer’s basic logic B plus the reductio rule and the disjunctive syllogism. Standard relevant logics such as E and R (plus γ ) and Ackermann’s logics of ‘strenge Implikation’ Π and Π ′ are among the logics considered.
In this paper, consistency is understood as the absence of the negation of a theorem, and not, in general, as the absence of any contradiction. We define the basic constructive logic BKc1 adequate to this sense of consistency in the ternary relational semantics without a set of designated points. Then we show how to define a series of logics extending BKc1 within the spectrum delimited by contractionless minimal intuitionistic logic. All logics defined in the paper are paraconsistent logics.
A simple, bivalent semantics is defined for Łukasiewicz’s 4-valued modal logic Łm4. It is shown that according to this semantics, the essential presupposition underlying Łm4 is the following: A is a theorem iff A is true conforming to both the reductionist and possibilist theses defined as follows: rt: the value of modal formulas is equivalent to the value of their respective argument iff A is true, etc.); pt: everything is possible. This presupposition highlights and explains all oddities arising in Łm4.
The logic DHb is the result of extending Sylvan and Plumwood’s minimal De Morgan logic BM with a dual intuitionistic negation of the type Sylvan defined for the extension CCω of da Costa’s paraconsistent logic Cω. We provide Routley–Meyer ternary relational semantics with a set of designated points for DHb and a wealth of its extensions included in G3DH, the expansion of G3+ with a dual intuitionistic negation of the kind considered by Sylvan (G3+ is the positive fragment of Gödelian (...) 3-valued logic G3). All logics in the paper are paraconsistent. (shrink)
Equivalent overdetermined and underdetermined bivalent Belnap–Dunn type semantics for the logics determined by all natural implicative expansions of Kleene’s strong 3-valued matrix with only one designated value are provided.
Routley–Meyer semantics (RM-semantics) is defined for Gödel 3-valued logic G3 and some logics related to it among which a paraconsistent one differing only from G3 in the interpretation of negation is to be remarked. The logics are defined in the Hilbert-style way and also by means of proof-theoretical and semantical consequence relations. The RM-semantics is defined upon the models for Routley and Meyer’s basic positive logic B+, the weakest positive RM-semantics. In this way, it is to be expected that the (...) models defined can be adapted to other related many-valued logics. (shrink)
Sylvan and Plumwood’s is the relevant De Morgan minimal logic in the Routley-Meyer semantics with a set of designated points. The aim of this paper is to define the logic and some of its extensions. The logic is the non-relevant De Morgan minimal logic in the Routley-Meyer semantics without a set of designated points.
Łukasiewicz three-valued logic Ł3 is often understood as the set of all 3-valued valid formulas according to Łukasiewicz’s 3-valued matrices. Following Wojcicki, in addition, we shall consider two alternative interpretations of Ł3: “well-determined” Ł3a and “truth-preserving” Ł3b defined by two different consequence relations on the 3-valued matrices. The aim of this paper is to provide (by using Dunn semantics) dual equivalent two-valued under-determined and over-determined interpretations for Ł3, Ł3a and Ł3b. The logic Ł3 is axiomatized as an extension of Routley (...) and Meyer’s basic positive logic following Brady’s strategy for axiomatizing many-valued logics by employing two-valued under-determined or over-determined interpretations. Finally, it is proved that “well determined” Łukasiewicz logics are paraconsistent. (shrink)
We provide Routley-Meyer type semantics for relevant logics including Contractionless Ticket Entailment TW (without the truth constant t and o) plus reductio R and Ackermann’s rule γ (i.e., disjunctive syllogism). These logics have the following properties. (i) All have the variable sharing property; some of them have, in addition, the Ackermann Property. (ii) They are stable. (iii) Inconsistent theories built upon these logics are not necessarily trivial.
The aim of this paper is to introduce an alternative to Łukasiewicz’s 4-valued modal logic Ł. As it is known, Ł is afflicted by “Łukasiewicz type paradoxes”. The logic we define, PŁ4, is a strong paraconsistent and paracomplete 4-valued modal logic free from this type of paradoxes. PŁ4 is determined by the degree of truth-preserving consequence relation defined on the ordered set of values of a modification of the matrix MŁ characteristic for the logic Ł. On the other hand, PŁ4 (...) is a rich logic in which a number of connectives can be defined. It also has a simple bivalent semantics of the Belnap–Dunn type. (shrink)
The logic B M is Sylvan and Plumwood's minimal De Morgan logic. The aim of this paper is to investigate extensions of B M endowed with a quasi-Boolean negation of intuitionistic character included...
“Weak relevant model structures” (wr-ms) are defined on “weak relevant matrices” by generalizing Brady’s model structure ${\mathcal{M}_{\rm CL}}$ built upon Meyer’s Crystal matrix CL. It is shown how to falsify in any wr-ms the Generalized Modus Ponens axiom and similar schemes used to derive Curry’s Paradox. In the last section of the paper we discuss how to extend this method of falsification to more general schemes that could also be used in deriving Curry’s Paradox.
Łukasiewicz three-valued logic Ł3 is often understood as the set of all 3-valued valid formulas according to Łukasiewicz’s 3-valued matrices. Following Wojcicki, in addition, we shall consider two alternative interpretations of Ł3: “well-determined” Ł3a and “truth-preserving” Ł3b defined by two different consequence relations on the 3-valued matrices. The aim of this paper is to provide dual equivalent two-valued under-determined and over-determined interpretations for Ł3, Ł3a and Ł3b. The logic Ł3 is axiomatized as an extension of Routley and Meyer’s basic positive (...) logic following Brady’s strategy for axiomatizing many-valued logics by employing two-valued under-determined or over-determined interpretations. Finally, it is proved that “well determined” Łukasiewicz logics are paraconsistent. (shrink)
The logic BN4 was defined by R.T. Brady in 1982. It can be considered as the 4-valued logic of the relevant conditional. E4 is a variant of BN4 that can be considered as the 4-valued logic of entailment. The aim of this paper is to define reduced general Routley-Meyer semantics for BN4 and E4. It is proved that BN4 and E4 are strongly sound and complete w.r.t. their respective semantics.
In Rogerson and Restall’s, the “class of implication formulas known to trivialize ” is recorded. The aim of this paper is to show how to invalidate any member in this class by using “weak relevant model structures”. Weak relevant model structures verify deep relevant logics only.
The logic TM is the result of adding the mingle axiom, M to Ticket Entailment logic, T. In the present study, it is proved that TM has the variable-sharing property . Ternary relational semantics for TM is provided. Finally, an interesting extension of TM with the vsp is briefly discussed.
A classical result by Słupecki states that a logic L is functionally complete for the 3-element set of truth-values THREE if, in addition to functionally including Łukasiewicz’s 3-valued logic Ł3, what he names the ‘$T$-function’ is definable in L. By leaning upon this classical result, we prove a general theorem for defining binary expansions of Kleene’s strong logic that are functionally complete for THREE.
A restriction of R-Mingle with the variable-sharing property and the Ackermann properties is defined. From an intuitive semantical point of view, this restriction is an alternative to Anderson and Belnap’s logic of entailment E.
In this paper, consistency is understood in the standard way, i.e. as the absence of a contradiction. The basic constructive logic BKc4, which is adequate to this sense of consistency in the ternary relational semantics without a set of designated points, is defined. Then, it is shown how to define a series of logics by extending BKc4 up to minimal intuitionistic logic. All logics defined in this paper are paraconsistent logics.
The logic B+ is Routley and Meyer’s basic positive logic. We define the logics BK+ and BK'+ by adding to B+ the K rule and to BK+ the characteristic S4 axiom, respectively. These logics are endowed with a relatively strong non-constructive negation. We prove that all the logics defined lack the K axiom and the standard paradoxes of consistency.
Łukasiewicz presented two different analyses of modal notions by means of many-valued logics: the linearly ordered systems Ł3,..., Open image in new window,..., \; the 4-valued logic Ł he defined in the last years of his career. Unfortunately, all these systems contain “Łukasiewicz type paradoxes”. On the other hand, Brady’s 4-valued logic BN4 is the basic 4-valued bilattice logic. The aim of this paper is to show that BN4 can be strengthened with modal operators following Łukasiewicz’s strategy for defining truth-functional (...) modal logics. The systems we define lack “Łukasiewicz type paradoxes”. Following Brady, we endow them with Belnap–Dunn type bivalent semantics. (shrink)
The logic BN4 can be considered as the 4-valued logic of the relevant conditional and the logic E4, as the 4-valued logic of entailment. The aim of this paper is to endow E4 with a 2-set-up Routley-Meyer semantics. It is proved that E4 is strongly sound and complete w.r.t. this semantics.
As it is well known, in the forties of the past century, Curry proved that in any logic S closed under Modus Ponens, uniform substitution of propositional variables and the Contraction Law, the naïve Comprehension axiom trivializes S in the sense that all propositions are derivable in S plus CA. Not less known is the fact that, ever since Curry published his proof, theses and rules weaker than W have been shown to cause the same effect as W causes. Among (...) these, the Contraction rule or the Modus Ponens axiom, for example, are to be noted. But, moreover, as Brady has proved, even the Generalized Modus Ponens axiom or the Generalized Contraction rule give rise to “Curry’s Paradox” under the same circumstances as W does. In some previous work by us, “weak relevant model structures” are defined on “weak relevant matrices” by generalizing Brady’s model structure MCL built upon Meyer’s Crystal matrix CL. We have proved that wr-ms only verify logics with the “depth relevance condition”. The aim of this paper is to show how to falsify gMPa and gRW in certain wr-ms. In particular, it will be shown that gMPa is falisfied in any wr-ms and gRW in any wr-ms verifying Routley and Meyer’s basic positive logic B+. (shrink)
The aim of this paper is to define the logical system Sm4 characterised by the degree of truth-preserving consequence relation defined on the ordered set of values of Smiley’s four-element matrix MSm4. The matrix MSm4 has been of considerable importance in the development of relevant logics and it is at the origin of bilattice logics. It will be shown that Sm4 is a most interesting paraconsistent logic which encloses a sound theory of logical necessity similar to that of Anderson and (...) Belnap’s logic of entailment E. Intuitively, Sm4 can be described as a four-valued expansion of the positive fragment of Lewis’ S5 or, alternatively, as a four-valued version of S5. (shrink)
LCo with the Converse Ackermann Property is defined as the result of restricting Contraction in LC. Intuitionistic and Superintuitionistic Negation is shown to be compatible with the CAP.
The logic BKc1 is the basic constructive logic for weak consistency in the ternary relational semantics without a set of designated points. In this paper, a number of extensions of B Kc1 defined with a propositional falsity constant are defined. It is also proved that weak consistency is not equivalent to negation-consistency or absolute consistency in any logic included in positive contractionless intermediate logic LC plus the constructive negation of BKc1 and the contraposition axioms.
The Converse Ackermann Property is the unprovability of formulas of the form (A -> B) -> C when C does contain neither -> nor ¬. Intuitively, the CAP amounts to rule out the derivability of pure non-necessitive propositions from non-necessitive ones. A constructive negation of the sort historically defined by, e.g., Johansson is added to positive logics with the CAP in the spectrum delimited by Ticket Entailment and Dummett’s logic LC.
Minimal Negation is defined within the basic positive relevance logic in the relational ternary semantics: B+. Thus, by defining a number of subminimal negations in the B+ context, principles of weak negation are shown to be isolable. Complete ternary semantics are offered for minimal negation in B+. Certain forms of reductio are conjectured to be undefinable (in ternary frames) without extending the positive logic. Complete semantics for such kinds of reductio in a properly extended positive logic are offered.
Two versions of minimal intuitionism are defined restricting Contraction. Both are defined by means of a falsity constant F. The first one follows the historical trend, the second is the result of imposing specialconstraints on F. RelationaI ternary semantics are provided.
The present paper is a sequel to Robles et al. :349–374, 2020. https://doi.org/10.1007/s10849-019-09306-2). A class of implicative expansions of Kleene’s 3-valued logic functionally including Łukasiewicz’s logic Ł3 is defined. Several properties of this class and/or some of its subclasses are investigated. Properties contemplated include functional completeness for the 3-element set of truth-values, presence of natural conditionals, variable-sharing property and vsp-related properties.
The logic TW+ is positive Ticket Entailment without the contraction axiom. Constructive negation is understood in the intuitionistic sense but without paradoxes of relevance. It is shown how to introduce a constructive negation of this kind in positive logics at least as strong as TW+. Special attention is paid to the reductio axioms. Concluding remarks about relevance, modal and entailment logics are stated. Complete relational ternary semantics are provided for the logics introduced in this paper.
Let MK3 I and MK3 II be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 G be defined exactly as MK3 I, except th...
The basic quasi-Boolean negation expansions of relevance logics included in Anderson and Belnap’s relevance logic R are defined. We consider two types of QB-negation: H-negation and D-negation. The former one is of paraintuitionistic or superintuitionistic character, the latter one, of dual intuitionistic nature in some sense. Logics endowed with H-negation are paracomplete; logics with D-negation are paraconsistent. All logics defined in the paper are given a Routley-Meyer ternary relational semantics.
As is known, a logic S is paraconsistent if the rule ECQ (E contradictione quodlibet) is not a rule of S. Not less well known is the fact that Lewis’ modal logics are not paraconsistent. Actually, Lewis vindicates the validity of ECQ in a famous proof currently known as the “Lewis’ proof” or “Lewis’ argument.” This proof essentially leans on the Disjunctive Syllogism as a rule of inference. The aim of this paper is to define a series of paraconsistent logics (...) included in S4 where the Disjunctive Syllogism is valid only as a rule of proof. (shrink)