Results for 'Generalised quantum model'

976 found
Order:
  1. Generalised Quantum Theory—Basic Idea and General Intuition: A Background Story and Overview. [REVIEW]Harald Walach & Nikolaus von Stillfried - 2011 - Axiomathes 21 (2):185-209.
    Science is always presupposing some basic concepts that are held to be useful. These absolute presuppositions (Collingwood) are rarely debated and form the framework for what has been termed paradigm by Kuhn. Our currently accepted scientific model is predicated on a set of presuppositions that have difficulty accommodating holistic structures and relationships and are not geared towards incorporating non-local correlations. Since the theoretical models we hold also determine what we perceive and take as scientifically viable, it is important to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  2.  66
    The generalised liar paradox: A quantum model and interpretation. [REVIEW]Jan Broekaert, Diederik Aerts & Bart D’Hooghe - 2006 - Foundations of Science 11 (4):399-418.
    The formalism of abstracted quantum mechanics is applied in a model of the generalized Liar Paradox. Here, the Liar Paradox, a consistently testable configuration of logical truth properties, is considered a dynamic conceptual entity in the cognitive sphere (Aerts, Broekaert, & Smets, [Foundations of Science 1999, 4, 115–132; International Journal of Theoretical Physics, 2000, 38, 3231–3239]; Aerts and colleagues[Dialogue in Psychology, 1999, 10; Proceedings of Fundamental Approachs to Consciousness, Tokyo ’99; Mind in Interaction]. Basically, the intrinsic contextuality of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Quantum Causal Modelling.Fabio Costa & Sally Shrapnel - 2016 - New Journal of Physics 18 (6):063032.
    Causal modelling provides a powerful set of tools for identifying causal structure from observed correlations. It is well known that such techniques fail for quantum systems, unless one introduces 'spooky' hidden mechanisms. Whether one can produce a genuinely quantum framework in order to discover causal structure remains an open question. Here we introduce a new framework for quantum causal modelling that allows for the discovery of causal structure. We define quantum analogues for core features of classical (...)
     
    Export citation  
     
    Bookmark   15 citations  
  4.  39
    Quantum causal models: the merits of the spirit of Reichenbach’s principle for understanding quantum causal structure.Robin Lorenz - 2022 - Synthese 200 (5):1-27.
    Through the introduction of his ‘common cause principle’ [The Direction of Time, 1956], Hans Reichenbach was the first to formulate a precise link relating causal claims to statements of probability. Despite some criticism, the principle has been hugely influential and successful—a pillar of scientific practice, as well as guiding our reasoning in everyday life. However, Bell’s theorem, taken in conjunction with quantum theory, challenges this principle in a fundamental sense at the microscopic level. For the same reason, the celebrated (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5. Quantum Theory Beyond the Physical: Information in Context.Kirsty Kitto, Brentyn Ramm, Laurianne Sitbon & Peter Bruza - 2011 - Axiomathes 21 (2):331-345.
    Measures and theories of information abound, but there are few formalised methods for treating the contextuality that can manifest in different information systems. Quantum theory provides one possible formalism for treating information in context. This paper introduces a quantum inspired model of the human mental lexicon. This model is currently being experimentally investigated and we present a preliminary set of pilot data suggesting that concept combinations can indeed behave non-separably.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  6.  67
    Inconsistent models for relevant arithmetics.Robert Meyer & Chris Mortensen - 1984 - Journal of Symbolic Logic 49 (3):917-929.
    This paper develops in certain directions the work of Meyer in [3], [4], [5] and [6]. In those works, Peano’s axioms for arithmetic were formulated with a logical base of the relevant logic R, and it was proved finitistically that the resulting arithmetic, called R♯, was absolutely consistent. It was pointed out that such a result escapes incau- tious formulations of Goedel’s second incompleteness theorem, and provides a basis for a revived Hilbert programme. The absolute consistency result used as a (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  7.  16
    Oracles and Query Lower Bounds in Generalised Probabilistic Theories.Howard Barnum, Ciarán M. Lee & John H. Selby - 2018 - Foundations of Physics 48 (8):954-981.
    We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality, purification, strong symmetry, and informationally consistent (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  8.  10
    Inconsistent Models for Relevant Arithmetics.Robert Meyer & Chris Mortensen - 2021 - Australasian Journal of Logic 18 (5):380-400.
    This paper develops in certain directions the work of Meyer in [3], [4], [5] and [6] (see also Routley [10] and Asenjo [11]). In those works, Peano’s axioms for arithmetic were formulated with a logical base of the relevant logic R, and it was proved finitistically that the resulting arithmetic, called R♯, was absolutely consistent. It was pointed out that such a result escapes incau- tious formulations of Goedel’s second incompleteness theorem, and provides a basis for a revived Hilbert programme. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  10
    Quantum Models of Cognition and Decision.Jerome R. Busemeyer & Peter D. Bruza - 2012 - Cambridge University Press.
    Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modelling probabilistic-dynamic systems using two aspects of quantum theory. The first, 'contextuality', is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   58 citations  
  10.  52
    Here/There/Everywhere: Quantum Models for Decolonizing Canadian State Onto-Epistemology.Norah Bowman - 2019 - Foundations of Science 26 (1):171-186.
    In settler-colonial Canada, the state does not receive Indigenous testimony as credible evidence. While the state often accepts Indigenous testimony in formal hearings, the state fundamentally rejects Indigenous evidence as a description of the world as it is, as an onto-epistemology. In other words, the Indigenous worldview formation, while it functions as a knowledge system that knows and predicts life, is not admitted to regulatory discussions about effects of resource extraction projects on life. Particularly in such resource-extraction review hearings, partly (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  96
    On Quantum Models of the Human Mind.Hongbin Wang & Yanlong Sun - 2014 - Topics in Cognitive Science 6 (1):98-103.
    Recent years have witnessed rapidly increasing interests in developing quantum theoretical models of human cognition. Quantum mechanisms have been taken seriously to describe how the mind reasons and decides. Papers in this special issue report the newest results in the field. Here we discuss why the two levels of commitment, treating the human brain as a quantum computer and merely adopting abstract quantum probability principles to model human cognition, should be integrated. We speculate that (...) cognition models gain greater modeling power due to a richer representation scheme. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  32
    Quantum models of cognition as Orwellian newspeak.Michael D. Lee & Wolf Vanpaemel - 2013 - Behavioral and Brain Sciences 36 (3):295-296.
  13.  83
    Quantum Model of Classical Mechanics: Maximum Entropy Packets. [REVIEW]P. Hájíček - 2009 - Foundations of Physics 39 (9):1072-1096.
    In a previous paper, a statistical method of constructing quantum models of classical properties has been described. The present paper concludes the description by turning to classical mechanics. The quantum states that maximize entropy for given averages and variances of coordinates and momenta are called ME packets. They generalize the Gaussian wave packets. A non-trivial extension of the partition-function method of probability calculus to quantum mechanics is given. Non-commutativity of quantum variables limits its usefulness. Still, the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  14. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15. Distance and Similarity Measures in Generalised Quantum Theory.Dieter Gernert - 2011 - Axiomathes 21 (2):303-313.
    A summary of recent experimental results shows that entanglement can be generated more easily than before, and that there are improved chances for its persistence. An eminent finding of Generalised Quantum Theory is the insight that the notion of entanglement can be extended, such that, e.g., psychological or psychophysical problem areas can be included, too. First, a general condition for entanglement to occur is given by the term ‘common prearranged context’. A formalised treatment requires a quantitative definition of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16.  5
    A Simple Quantum Model Linked to Decisions.Inge S. Helland - 2022 - Foundations of Physics 53 (1):1-13.
    This article may be seen as a summary and a final discussion of the work that the author has done in recent years on the foundation of quantum theory. It is shown that quantum mechanics as a model follows under certain specific conditions from a quite different, much simpler model. This model is connected to the mind of an observer, or to the joint minds of a group of communicating observers. The model is based (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  20
    From Classical to Quantum Models: The Regularising Rôle of Integrals, Symmetry and Probabilities.Jean-Pierre Gazeau - 2018 - Foundations of Physics 48 (11):1648-1667.
    In physics, one is often misled in thinking that the mathematical model of a system is part of or is that system itself. Think of expressions commonly used in physics like “point” particle, motion “on the line”, “smooth” observables, wave function, and even “going to infinity”, without forgetting perplexing phrases like “classical world” versus “quantum world”.... On the other hand, when a mathematical model becomes really inoperative in regard with correct predictions, one is forced to replace it (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  29
    Unitary Transformations in the Quantum Model for Conceptual Conjunctions and Its Application to Data Representation.Tomas Veloz & Sylvie Desjardins - 2015 - Frontiers in Psychology 6.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  19.  23
    The epistemic benefits of generalisation in modelling I: Systems and applicability.Aki Lehtinen - 2021 - Synthese 199 (3-4):10343-10370.
    This paper provides a conceptual framework that allows for distinguishing between different kinds of generalisation and applicability. It is argued that generalising models may bring epistemic benefits. They do so if they show that restrictive and unrealistic assumptions do not threaten the credibility of results derived from models. There are two different notions of applicability, generic and specific, which give rise to three different kinds of generalizations. Only generalising a result brings epistemic benefits concerning the truth of model components (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  20.  61
    My Double Unveiled: The Dissipative Quantum Model of Brain.Giuseppe Vitiello - 2001 - John Benjamins.
    CHAPTER Structure and function In physical systems made by a large number of basic constituents one can observe collective properties which find their ...
    Direct download  
     
    Export citation  
     
    Bookmark   25 citations  
  21.  24
    Spin and Wind Directions II: A Bell State Quantum Model.Tomas Veloz, Sandro Sozzo, Massimiliano Sassoli de Bianchi, Suzette Geriente, Lester Beltran, Jonito Aerts Arguëlles & Diederik Aerts - 2018 - Foundations of Science 23 (2):337-365.
    In the first half of this two-part article, we analyzed a cognitive psychology experiment where participants were asked to select pairs of directions that they considered to be the best example of Two Different Wind Directions, and showed that the data violate the CHSH version of Bell’s inequality, with same magnitude as in typical Bell-test experiments in physics. In this second part, we complete our analysis by presenting a symmetrized version of the experiment, still violating the CHSH inequality but now (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  22. Superposition of Episodic Memories: Overdistribution and Quantum Models.Charles J. Brainerd, Zheng Wang & Valerie F. Reyna - 2013 - Topics in Cognitive Science 5 (4):773-799.
    Memory exhibits episodic superposition, an analog of the quantum superposition of physical states: Before a cue for a presented or unpresented item is administered on a memory test, the item has the simultaneous potential to occupy all members of a mutually exclusive set of episodic states, though it occupies only one of those states after the cue is administered. This phenomenon can be modeled with a nonadditive probability model called overdistribution (OD), which implements fuzzy-trace theory's distinction between verbatim (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  23.  54
    Spin and Wind Directions II: A Bell State Quantum Model.Diederik Aerts, Jonito Aerts Arguëlles, Lester Beltran, Suzette Geriente, Massimiliano Sassoli de Bianchi, Sandro Sozzo & Tomas Veloz - 2018 - Foundations of Science 23 (2):337-365.
    In the first half of this two-part article, we analyzed a cognitive psychology experiment where participants were asked to select pairs of directions that they considered to be the best example of Two Different Wind Directions, and showed that the data violate the CHSH version of Bell’s inequality, with same magnitude as in typical Bell-test experiments in physics. In this second part, we complete our analysis by presenting a symmetrized version of the experiment, still violating the CHSH inequality but now (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  24.  15
    The epistemic benefits of generalisation in modelling II: expressive power and abstraction.Aki Lehtinen - 2022 - Synthese 200 (2):1-24.
    This paper contributes to the philosophical accounts of generalisation in formal modelling by introducing a conceptual framework that allows for recognising generalisations that are epistemically beneficial in the sense of contributing to the truth of a model result or component. The framework is useful for modellers themselves because it is shown how to recognise different kinds of generalisation on the basis of changes in model descriptions. Since epistemically beneficial generalisations usually de-idealise the model, the paper proposes a (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25. Quantum-like models cannot account for the conjunction fallacy.Thomas Boyer-Kassem, Sébastien Duchêne & Eric Guerci - 2016 - Theory and Decision 81 (4):479-510.
    Human agents happen to judge that a conjunction of two terms is more probable than one of the terms, in contradiction with the rules of classical probabilities—this is the conjunction fallacy. One of the most discussed accounts of this fallacy is currently the quantum-like explanation, which relies on models exploiting the mathematics of quantum mechanics. The aim of this paper is to investigate the empirical adequacy of major quantum-like models which represent beliefs with quantum states. We (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  26.  23
    How Do Social Norms and Expectations About Others Influence Individual Behavior?: A Quantum Model of Self/other-perspective Interaction in Strategic Decision-Making.Jakub Tesar - 2020 - Foundations of Science 25 (1):135-150.
    Social norms can be understood as the grammar of social interaction. Like grammar in speech, they specify what is acceptable in a given context. But what are the specific rules that direct human compliance with the norm? This paper presents a quantitative model of self- and the other-perspective interaction based on a ‘quantum model of decision-making’, which can explain some of the ‘fallacies’ of the classical model of strategic choice. By connecting two fields of social science (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  6
    Quantum and Relativistic Corrections to Maxwell–Boltzmann Ideal Gas Model from a Quantum Phase Space Approach.Rivo Herivola Manjakamanana Ravelonjato, Ravo Tokiniaina Ranaivoson, Raoelina Andriambololona, Roland Raboanary, Hanitriarivo Rakotoson & Naivo Rabesiranana - 2023 - Foundations of Physics 53 (5):1-20.
    The quantum corrections related to the ideal gas model often considered are those associated to the bosonic or fermionic nature of particles. However, in this work, other kinds of corrections related to the quantum nature of phase space are highlighted. These corrections are introduced as improvements in the expression of the partition function of an ideal gas. Then corrected thermodynamics properties of the ideal gas are deduced. Both the non-relativistic quantum and relativistic quantum cases are (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28. Some phenomenological implications of a quantum model of consciousness.I. N. Marshall - 1995 - Minds and Machines 5 (4):609-20.
    We contrast person-centered categories with objective categories related to physics: consciousness vs. mechanism, observer vs. observed, agency vs. event causation. semantics vs. syntax, beliefs and desires vs. dispositions. How are these two sets of categories related? This talk will discuss just one such dichotomy: consciousness vs. mechanism. Two extreme views are dualism and reductionism. An intermediate view is emergence. Here, consciousness is part of the natural order (as against dualism), but consciousness is not definable only in terms of physical mass, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  19
    Beyond two modes of thought: A quantum model of how three cognitive variables yield conceptual change.Mika Winslow & Liane Gabora - 2022 - Frontiers in Psychology 13.
    We re-examine the long-held postulate that there are two modes of thought, and develop a more fine-grained analysis of how different modes of thought affect conceptual change. We suggest that cognitive development entails the fine-tuning of three dimensions of thought: abstractness, divergence, and context-specificity. Using a quantum cognition modeling approach, we show how these three variables differ, and explain why they would have a distinctively different impacts on thought processes and mental contents. We suggest that, through simultaneous manipulation of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30. A generalised model of judgment aggregation.Franz Dietrich - 2007 - Social Choice and Welfare 4 (28):529-565.
    The new field of judgment aggregation aims to merge many individual sets of judgments on logically interconnected propositions into a single collective set of judgments on these propositions. Judgment aggregation has commonly been studied using classical propositional logic, with a limited expressive power and a problematic representation of conditional statements ("if P then Q") as material conditionals. In this methodological paper, I present a simple unified model of judgment aggregation in general logics. I show how many realistic decision problems (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   68 citations  
  31.  39
    A generalisation of the concept of a relational model for modal logic.David Makinson - 1970 - Theoria 36 (3):331-335.
    Generalises the concept of a relational model for modal logic, due to Kripke, so as to obtain a closer correspondence between relational and algebraic models. The generalisation obtained is essentially equivalent to the notion of a "first-order" model that was defined independently by S.K.Thomason.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  32. Decoherent Histories of Spin Networks.David P. B. Schroeren - 2013 - Foundations of Physics 43 (3):310-328.
    The decoherent histories formalism, developed by Griffiths, Gell-Mann, and Hartle (in Phys. Rev. A 76:022104, 2007; arXiv:1106.0767v3 [quant-ph], 2011; Consistent Quantum Theory, Cambridge University Press, 2003; arXiv:gr-qc/9304006v2, 1992) is a general framework in which to formulate a timeless, ‘generalisedquantum theory and extract predictions from it. Recent advances in spin foam models allow for loop gravity to be cast in this framework. In this paper, I propose a decoherence functional for loop gravity and interpret existing results (Bianchi (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  33. A Quantum Question Order Model Supported by Empirical Tests of an A Priori and Precise Prediction.Zheng Wang & Jerome R. Busemeyer - 2013 - Topics in Cognitive Science 5 (4):689-710.
    Question order effects are commonly observed in self-report measures of judgment and attitude. This article develops a quantum question order model (the QQ model) to account for four types of question order effects observed in literature. First, the postulates of the QQ model are presented. Second, an a priori, parameter-free, and precise prediction, called the QQ equality, is derived from these mathematical principles, and six empirical data sets are used to test the prediction. Third, a new (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  34.  31
    Quantum Mechanics as Generalised Theory of Probabilities.Michel Bitbol - unknown
    It is argued that quantum mechanics does not have merely a predictive function like other physical theories; it consists in a formalisation of the conditions of possibility of any prediction bearing upon phenomena whose circumstances of detection are also conditions of production. This is enough to explain its probabilistic status and theoretical structure.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  79
    Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  36. Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  37. Classical models for quantum information.Federico Holik & Gustavo Martin Bosyk - 2017 - In Olimpia Lombardi, Sebastian Fortin, Federico Holik & Cristian López (eds.), What is Quantum Information? New York, NY: CUP.
     
    Export citation  
     
    Bookmark  
  38. The δ-Quantum Machine, the k-Model, and the Non-ordinary Spatiality of Quantum Entities.Massimiliano Sassoli de Bianchi - 2013 - Foundations of Science 18 (1):11-41.
    The purpose of this article is threefold. Firstly, it aims to present, in an educational and non-technical fashion, the main ideas at the basis of Aerts’ creation-discovery view and hidden measurement approach : a fundamental explanatory framework whose importance, in this author’s view, has been seriously underappreciated by the physics community, despite its success in clarifying many conceptual challenges of quantum physics. Secondly, it aims to introduce a new quantum machine—that we call the δ quantum machine —which (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  39.  76
    Quantum-Like Model for Decision Making Process in Two Players Game: A Non-Kolmogorovian Model.Masanari Asano, Masanori Ohya & Andrei Khrennikov - 2011 - Foundations of Physics 41 (3):538-548.
    In experiments of games, players frequently make choices which are regarded as irrational in game theory. In papers of Khrennikov (Information Dynamics in Cognitive, Psychological and Anomalous Phenomena. Fundamental Theories of Physics, Kluwer Academic, Norwell, 2004; Fuzzy Sets Syst. 155:4–17, 2005; Biosystems 84:225–241, 2006; Found. Phys. 35(10):1655–1693, 2005; in QP-PQ Quantum Probability and White Noise Analysis, vol. XXIV, pp. 105–117, 2009), it was pointed out that statistics collected in such the experiments have “quantum-like” properties, which can not be (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  40. The Quantum Harmonic Oscillator in the ESR Model.Sandro Sozzo - 2013 - Foundations of Physics 43 (6):792-804.
    The ESR model proposes a new theoretical perspective which incorporates the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) in a noncontextual framework, reinterpreting quantum probabilities as conditional on detection instead of absolute. We have provided in some previous papers mathematical representations of the physical entities introduced by the ESR model, namely observables, properties, pure states, proper and improper mixtures, together with rules for calculating conditional and overall probabilities, and for describing transformations of states induced (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  41.  69
    Quantum Causal Models, Faithfulness, and Retrocausality.Peter W. Evans - 2018 - British Journal for the Philosophy of Science 69 (3):745-774.
    Wood and Spekkens argue that any causal model explaining the EPRB correlations and satisfying the no-signalling constraint must also violate the assumption that the model faithfully reproduces the statistical dependences and independences—a so-called ‘fine-tuning’ of the causal parameters. This includes, in particular, retrocausal explanations of the EPRB correlations. I consider this analysis with a view to enumerating the possible responses an advocate of retrocausal explanations might propose. I focus on the response of Näger, who argues that the central (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  42.  79
    Discovering Quantum Causal Models.Sally Shrapnel - 2019 - British Journal for the Philosophy of Science 70 (1):1-25.
    Costa and Shrapnel have recently proposed an interventionist theory of quantum causation. The formalism generalizes the classical methods of Pearl and allows for the discovery of quantum causal structure via localized interventions. Classical causal structure is presented as a special case of this more general framework. I introduce the account and consider whether this formalism provides a causal explanation for the Bell correlations.
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  43.  24
    A quantum geometric model of similarity.Emmanuel M. Pothos, Jerome R. Busemeyer & Jennifer S. Trueblood - 2013 - Psychological Review 120 (3):679-696.
  44.  51
    ψ-Epistemic Models, Einsteinian Intuitions, and No-Gos. A Critical Study of Recent Developments on the Quantum State.Florian J. Boge - 2016 - PhilSci-Archive.
    Quantum mechanics notoriously faces the measurement problem, the problem that if read thoroughly, it implies the nonexistence of definite outcomes in measurement procedures. A plausible reaction to this and to related problems is to regard a system's quantum state |ψ> merely as an indication of our lack of knowledge about the system, i.e., to interpret it epistemically. However, there are radically different ways to spell out such an epistemic view of the quantum state. We here investigate recent (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  45. The Potential of Using Quantum Theory to Build Models of Cognition.Zheng Wang, Jerome R. Busemeyer, Harald Atmanspacher & Emmanuel M. Pothos - 2013 - Topics in Cognitive Science 5 (4):672-688.
    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  46. A quantum mechanical model of consciousness and the emergence of?I?Danah Zohar - 1995 - Minds and Machines 5 (4):597-607.
    There have been suggestions that the unity of consciousness may be related to the kind of holism depicted only in quantum physics. This argument will be clarified and strengthened. It requires the brain to contain a quantum system with the right properties — a Bose-Einstein condensate. It probably does contain one such system, as both theory and experiment have indicated. In fact, we cannot pay full attention to a quantum whole and its parts simultaneously, though we may (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction.Jeffrey M. Schwartz, Henry P. Stapp & Mario Beauregard - 2005 - Philosophical Transactions of the Royal Society B 360:1309-1327.
    Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. ‘feeling’, ‘knowing’ and ‘effort’) are not included as primary causal factors. This (...)
    Direct download  
     
    Export citation  
     
    Bookmark   35 citations  
  48.  21
    A generalised model of hydrogen diffusion in metals with multiple trap types.Jesús Toribio & Viktor Kharin - 2015 - Philosophical Magazine 95 (31):3429-3451.
  49. A model for the solution of the quantum measurement problem.Biswaranjan Dikshit - 2019 - Science and Philosophy 7 (2):59-70.
    The basic idea of quantum mechanics is that the property of any system can be in a state of superposition of various possibilities. This state of superposition is also known as wave function and it evolves linearly with time in a deterministic way in accordance with the Schrodinger equation. However, when a measurement is carried out on the system to determine the value of that property, the system instantaneously transforms to one of the eigen states and thus we get (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50. Models and the limits of theory: quantum hamiltonians and the BCS model of superconductivity.Nancy Cartwright - 1999 - In Mary S. Morgan & Margaret Morrison (eds.), Models as Mediators: Perspectives on Natural and Social Science. Cambridge University Press. pp. 241-281.
1 — 50 / 976