The Ghirardi–Rimini–Weber (GRW) theory of spontaneous wave function collapse is known to provide a quantum theory without observers, in fact two different ones by using either the matter density ontology (GRWm) or the flash ontology (GRWf). Both theories are known to make predictions different from those of quantum mechanics, but the difference is so small that no decisive experiment can as yet be performed. While some testable deviations from quantum mechanics have long been known, we provide here something that has (...) until now been missing: a formalism that succinctly summarizes the empirical predictions of GRWm and GRWf. We call it the GRW formalism. Its structure is similar to that of the quantum formalism but involves different operators. In other words, we establish the validity of a general algorithm for directly computing the testable predictions of GRWm and GRWf. We further show that some well-defined quantities cannot be measured in a GRW world, for example the number of collapses in a system during a chosen time interval. (shrink)
How can we better understand and treat those suffering from schizophrenia and manic-depressive illnesses? This important new book takes us into the world of those suffering from such disorders. Using self descriptions, its emphasis is not on how mental health professionals view sufferers, but on how the patients themselves experience their disorder. A new volume in the International Perspectives in Philosophy and Psychiatry series, this book will be of great interest to all those working with sufferers from such disorders - (...) helping them to better understand their mental lives, and providing important insights into how best to treat them. (shrink)
Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
Russell's involuted path in the development of his theory of logical types from 1903 to 1910-13 is examined and explained in terms of the development in his early philosophy of the notion of a logical subject vis-a-vis the problem of the one and many; i.e., the problem for russell, first, of a class-as-one as a logical subject as opposed to a class as many, and, secondly, of a propositional function as a single and separate logical subject as opposed to existing (...) only in the many propositions that are its values. (shrink)
A semantic analysis of mass nouns is given in terms of a logic of classes as many. In previous work it was shown that plural reference and predication for count nouns can be interpreted within this logic of classes as many in terms of the subclasses of the classes that are the extensions of those count nouns. A brief review of that account of plurals is given here and it is then shown how the same kind of interpretation can also (...) be given for mass nouns. (shrink)
This is a review of the book Quantum [Un]speakables: From Bell to Quantum Information. Reinhold A. Bertlmann and Anton Zeilinger (editors). xxii + 483 pp. Springer-Verlag, 2002. $89.95.
A minimal second order modal logic of natural kinds is formulated. Concepts are distinguished from properties and relations in the conceptual-logistic background of the logic through a distinction between free and bound predicate variables. Not all concepts (as indicated by free predicate variables) need have a property or relation corresponding to them (as values of bound predicate variables). Issues pertaining to identity and existence as impredicative concepts are examined and an analysis of mass terms as nominalized predicates for kinds of (...) stuff is proposed. The minimal logic is extendible through a summum genus, an infima species or a partition principle for natural kinds. (shrink)
A brief review of the historicalrelation between logic and ontologyand of the opposition between the viewsof logic as language and logic as calculusis given. We argue that predication is morefundamental than membership and that differenttheories of predication are based on differenttheories of universals, the three most importantbeing nominalism, conceptualism, and realism.These theories can be formulated as formalontologies, each with its own logic, andcompared with one another in terms of theirrespective explanatory powers. After a briefsurvey of such a comparison, we argue (...) that anextended form of conceptual realism provides themost coherent formal ontology and, as such, canbe used to defend the view of logic as language. (shrink)
In this text, a variety of modal logics at the sentential, first-order, and second-order levels are developed with clarity, precision and philosophical insight.
The notion of a "class as many" was central to Bertrand Russell''s early form of logicism in his 1903 Principles of Mathematics. There is no empty class in this sense, and the singleton of an urelement (or atom in our reconstruction) is identical with that urelement. Also, classes with more than one member are merely pluralities — or what are sometimes called "plural objects" — and cannot as such be themselves members of classes. Russell did not formally develop this notion (...) of a class but used it only informally. In what follows, we give a formal, logical reconstruction of the logic of classes as many as pluralities (or plural objects) within a fragment of the framework of conceptual realism. We also take groups to be classes as many with two or more members and show how groups provide a semantics for plural quantifier phrases. (shrink)
Bertrand Russell introduced several novel ideas in his 1903 Principles of Mathematics that he later gave up and never went back to in his subsequent work. Two of these are the related notions of denoting concepts and classes as many. In this paper we reconstruct each of these notions in the framework of conceptual realism and connect them through a logic of names that encompasses both proper and common names, and among the latter, complex as well as simple common names. (...) Names, proper or common, and simple or complex, occur as parts of quantifier phrases, which in conceptual realism stand for referential concepts, i.e., cognitive capacities that inform our speech and mental acts with a referential nature and account for the intentionality, or directedness, of those acts. In Russell’s theory, quantifier phrases express denoting concepts (which do not include proper names). In conceptual realism, names, as well as predicates, can be nominalized and allowed to occur as "singular terms", i.e., as arguments of predicates. Occurring as a singular term, a name denotes, if it denotes at all, a class as many, where, as in Russell’s theory, a class as many of one object is identical with that one object, and a class as many of more than one object is a plurality, i.e., a plural object that we call a group. Also, as in Russell’s theory, there is no empty class as many. When nominalized, proper names function as "singular terms" just the way they do in so-called free logic. Leśniewski’s ontology, which is also called a logic of names can be completely interpreted within this conceptualist framework, and the well-known oddities of Leśniewski’s system are shown not to be odd at all when his system is so interpreted. Finally, we show how the pluralities, or groups, of the logic of classes as many can be used as the semantic basis of plural reference and predication. We explain in this way Russell’s "fundamental doctrine upon which all rests", i.e., "the doctrine that the subject of a proposition may be plural, and that such plural subjects are what is meant by classes [as many] which have more than one term" (Russell 1938, p. 517). (shrink)
A conceptual theory of the referential and predicable concepts used in basic speech and mental acts is described in which singular and general, complex and simple, and pronominal and nonpronominal, referential concepts are given a uniform account. The theory includes an intensional realism in which the intensional contents of predicable and referential concepts are represented through nominalized forms of the predicate and quantifier phrases that stand for those concepts. A central part of the theory distinguishes between active and deactivated referential (...) concepts, where the latter are represented by nominalized quantifier phrases that occur as parts of complex predicates. Peter Geach's arguments against theories of general reference in Reference and Generality are used as a foil to test the adequacy of the theory. Geach's arguments are shown to either beg the question of general as opposed to singular reference or to be inapplicable because of the distinction between active and deactivated referential concepts. (shrink)
While operators for logical necessity and possibility represent "internal" conditions of propositions (or of their corresponding states of affairs), These conditions will be "formal", As is required by logical atomism, And not "material" in content if from the (pseudo) semantical point of view the modal operators range over "all the possible worlds" of a logical space rather than over arbitrary non-Empty sets of worlds (as is usually done in modal logic). Some of the implications of this requirement are noted and (...) though several variants of realist logical atomism are distinguished and discussed, The theory of logical form developed is nominalist. Many of nominalism's difficulties and inadequacies become transparent in the context of logical atomism and are so noted. (shrink)
Russell's "new contradiction" about "the totality of propositions" has been connected with a number of modal paradoxes. M. Oksanen has recently shown how these modal paradoxes are resolved in the set theory NFU. Russell's paradox of the totality of propositions was left unexplained, however. We reconstruct Russell's argument and explain how it is resolved in two intensional logics that are equiconsistent with NFU. We also show how different notions of possible worlds are represented in these intensional logics.
A first-order formulation of Le?niewski's ontology is formulated and shown to be interpretable within a free first-order logic of identity extended to include nominal quantification over proper and common-name concepts. The latter theory is then shown to be interpretable in monadic second-order predicate logic, which shows that the first-order part of Le?niewski's ontology is decidable.
The aims of my paper are to set out Aquinas’s arguments in favour of the thesis of God as Subsistent Being itself; set out the arguments against; and propose a fresh reading of that thesis that takes into account both Thomistic doctrine and the criticisms of it. In this way, I shall proceed as in a medieval quaestio, with arguments in favour, sed contra and respondeo.
The problematic features of Quine's set theories NF and ML are a result of his replacing the higher-order predicate logic of type theory by a first-order logic of membership, and can be resolved by returning to a second-order logic of predication with nominalized predicates as abstract singular terms. We adopt a modified Fregean position called conceptual realism in which the concepts (unsaturated cognitive structures) that predicates stand for are distinguished from the extensions (or intensions) that their nominalizations denote as singular (...) terms. We argue against Quine's view that predicate quantifiers can be given a referential interpretation only if the entities predicates stand for on such an interpretation are the same as the classes (assuming extensionality) that nominalized predicates denote as singular terms. Quine's alternative of giving predicate quantifiers only a substitutional interpretation is compared with a constructive version of conceptual realism, which with a logic of nominalized predicates is compared with Quine's description of conceptualism as a ramified theory of classes. We argue against Quine's implicit assumption that conceptualism cannot account for impredicative concept-formation and compare holistic conceptual realism with Quine's class Platonism. (shrink)
This paper discusses an argument by Norton to the effect that reversible processes in thermodynamics have paradoxical character, due to the infinite-time limit. For Norton, one can “dispel the fog of paradox” by adopting a distinction between idealizations and approximations, which he himself puts forward. Accordingly, reversible processes ought to be regarded as approximations, rather than idealizations. Here, we critically assess his proposal. In doing so, we offer a resolution of his alleged paradox based on the original work by Tatiana (...) Ehrenfest-Afanassjeva on the foundations of thermodynamics. (shrink)
Some internal and philosophical remarks are made regarding a system of a second order logic of existence axiomatized by the author. Attributes are distinguished in the system according as their possession entails existence or not, The former being called e-Attributes. Some discussion of the special principles assumed for e-Attributes is given as well as of the two notions of identity resulting from such a distinction among attributes. Non-Existing objects are of course indiscernible in terms of e-Attributes. In addition, However, Existing (...) objects indiscernible in terms of e-Attributes are indiscernible in terms of all attributes. (shrink)